We investigate the non-linear equilibration of a two-layer quasi-geostrophic flow in a channel with an initial eastward baroclinically unstable jet in the upper layer, paying particular attention to the role of bottom friction. In the limit of low bottom friction, classical theory of geostrophic turbulence predicts an inverse cascade of kinetic energy in the horizontal with condensation at the domain scale and barotropization in the vertical. By contrast, in the limit of large bottom friction, the flow is dominated by ribbons of high kinetic energy in the upper layer. These ribbons correspond to meandering jets separating regions of homogenized potential vorticity. We interpret these results by taking advantage of the peculiar conservation laws satisfied by this system: the dynamics can be recast in such a way that the initial eastward jet in the upper layer appears as an initial source of potential vorticity levels in the upper layer. The initial baroclinic instability leads to a turbulent flow that stirs this potential vorticity field while conserving the global distribution of potential vorticity levels. Statistical mechanical theory of the 1 1 2 layer quasi-geostrophic model predicts the formation of two regions of homogenized potential vorticity separated by a minimal interface. We explain that cascade phenomenology leads to the same result. We then show that the dynamics of the ribbons results from a competition between a tendency to reach the equilibrium state and baroclinic instability that induces meanders of the interface. These meanders intermittently break and induce potential vorticity mixing, but the interface remains sharp throughout the flow evolution. We show that for some parameter regimes, the ribbons act as a mixing barrier which prevents relaxation toward equilibrium, favouring the emergence of multiple zonal (eastward) jets.

1.
I. M.
Held
, “
The gap between simulation and understanding in climate modeling
,”
Bull. Am. Meteorol. Soc.
86
,
1609
1614
(
2005
).
2.
A. C.
de Verdiere
, “
Keeping the freedom to build idealized climate models
,”
Eos, Trans. Amer. Geophys. Union
90
,
224
(
2009
).
3.
G. K.
Vallis
,
Atmospheric and Oceanic Fluid Dynamics
(
Cambridge University Press
,
2006
).
4.
J. G.
Charney
, “
Geostrophic turbulence
,”
J. Atmos. Sci.
28
,
1087
1095
(
1971
).
5.
P. B.
Rhines
, “
Geostrophic turbulence
,”
Annu. Rev. Fluid Mech.
11
,
401
441
(
1979
).
6.
R.
Salmon
,
Lectures On Geophysical Fluid Dynamics
(
Oxford University Press
,
1998
).
7.
A. F.
Thompson
and
W. R.
Young
, “
Scaling baroclinic eddy fluxes: Vortices and energy balance
,”
J. Phys. Oceanogr.
36
,
720
(
2006
).
8.
B. K.
Arbic
and
G. R.
Flierl
, “
Coherent vortices and kinetic energy ribbons in asymptotic, quasi two-dimensional f-plane turbulence
,”
Phys. Fluids
15
,
2177
2189
(
2003
).
9.
B. K.
Arbic
and
G. R.
Flierl
, “
Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: Application to midocean eddies
,”
J. Phys. Oceanogr.
34
,
2257
2273
(
2004
).
10.
J.
Miller
, “
Statistical mechanics of Euler equations in two dimensions
,”
Phys. Rev. Lett.
65
,
2137
2140
(
1990
).
11.
R.
Robert
and
J.
Sommeria
, “
Statistical equililbrium states for two-dimensional flows
,”
J. Fluid Mech.
229
,
291
310
(
1991
).
12.
F.
Bouchet
and
J.
Sommeria
, “
Emergence of intense jets and Jupiter’s great red spot as maximum-entropy structures
,”
J. Fluid Mech.
464
,
165
207
(
2002
).
13.
J.
Pedlosky
,
Geophysical Fluid Dynamics
(
Springer-Verlag
,
New York and Berlin
,
1982
), Vol. 1, p. 636.
14.
J. C.
McWilliams
,
W. R.
Holland
, and
J.
Chow
, “
A description of numerical Antarctic Circumpolar Currents
,”
Dyn. Atmos. Oceans
2
,
213
291
(
1978
).
15.
W. R.
Holland
, “
The role of mesoscale eddies in the general circulation of the ocean-numerical experiments using a wind-driven quasi-geostrophic model
,”
J. Phys. Oceanogr.
8
,
363
392
(
1978
).
16.
T. G.
Shepherd
, “
Nonlinear saturation of baroclinic instability. Part I: The two-layer model
,”
J. Atmos. Sci.
45
,
2014
2025
(
1988
).
17.

The potential vorticity of a fluid particle in the lower layer is q2 = ∇2ψ2 + (ψ1ψ2Uy)/((1 − δ) R2); the term (ψ2ψ1)/δR2 may be expected to remain bounded since streamfunctions are smooth fields, and the total energy is bounded. Consequently, if q2 becomes very large, then q2 ≈ ∇2ψ2, and bottom friction will tend to decrease the value of q2.

18.
A.
Venaille
,
G.
Vallis
, and
S.
Griffies
, “
The catalytic role of the beta effect in barotropization processes
,”
J. Fluid Mech.
709
,
490
515
(
2012
).
19.
A.
Venaille
, “
Mélange et circulation océanique: Une approche par la physique statistique
,” Ph.D. thesis (
Université Joseph Fourier-Grenoble
,
2008
).
20.
C.
Herbert
, “
Nonlinear energy transfers and phase diagrams for geostrophically balanced rotating-stratified flows
,”
Phys. Rev. E
89
,
033008
(
2014
).
21.
R.
Fjortoft
, “
On the changes in the spectral distribution of kinetic energy for two-dimensional non-divergent flow
,”
Tellus
5
,
225
230
(
1953
).
22.
R. H.
Kraichnan
, “
Inertial ranges in two-dimensional turbulence
,”
Phys. Fluids
10
,
1417
(
1967
).
23.
S.
Nazarenko
and
B.
Quinn
, “
Triple cascade behavior in quasi-geostrophic and drift turbulence and generation of zonal jets
,”
Phys. Rev. Lett.
103
,
118501
(
2009
).
24.
V. D.
Larichev
and
J. C.
McWilliams
, “
Weakly decaying turbulence in an equivalent-barotropic fluid
,”
Phys. Fluids
3
,
938
950
(
1991
).
25.
R. T.
Pierrehumbert
,
I. M.
Held
, and
K. L.
Swanson
, “
Spectra of local and nonlocal two-dimensional turbulence
,”
Chaos Solitons Fractals
4
,
1111
1116
(
1994
).
26.
K. S.
Smith
,
G.
Boccaletti
,
C. C.
Henning
,
I.
Marinov
,
C. Y.
Tam
,
I. M.
Held
, and
G. K.
Vallis
, “
Turbulent diffusion in the geostrophic inverse cascade
,”
J. Fluid Mech.
469
,
13
48
(
2002
).
27.
J.
Miller
,
P. B.
Weichman
, and
M.
Cross
, “
Statistical mechanics, Eulers equation, and Jupiters red spot
,”
Phys. Rev. A
45
,
2328
(
1992
).
28.
A.
Majda
and
X.
Wang
,
Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows
(
Cambridge University Press
,
2006
).
29.
J.
Marston
, “
Planetary atmospheres as nonequilibrium condensed matter
,”
Annu. Rev. Condens. Matter Phys.
3
,
285
310
(
2012
).
30.
F.
Bouchet
and
A.
Venaille
, “
Statistical mechanics of two-dimensional and geophysical flows
,”
Phys. Rep.
515
,
227
295
(
2012
).
31.
V.
Lucarini
,
R.
Blender
,
C.
Herbert
,
S.
Pascale
, and
J.
Wouters
, “Mathematical and physical ideas for climate science,” preprint arXiv:1311.1190 (2013).
32.
P.
Chavanis
and
J.
Sommeria
, “
Classification of self-organized vortices in two-dimensional turbulence: The case of a bounded domain
,”
J. Fluid Mech.
314
,
267
298
(
1996
).
33.
A.
Venaille
and
F.
Bouchet
, “
Solvable phase diagrams and ensemble inequivalence for two-dimensional and geophysical turbulent flows
,”
J. Stat. Phys.
143
,
346
380
(
2011
).
34.
M.
Corvellec
, “
Phase transitions in two-dimensional and geophysical turbulence
,” Ph.D. thesis (
Ecole Normale Superieure de Lyon
,
2012
).
35.
P. B.
Weichman
, “
Equilibrium theory of coherent vortex and zonal jet formation in a system of nonlinear Rossby waves
,”
Phys. Rev. E
73
,
036313
(
2006
).
36.
A.
Venaille
and
F.
Bouchet
, “
Oceanic rings and jets as statistical equilibrium states
,”
J. Phys. Oceanogr.
41
,
1860
1873
(
2011
).
37.
L.-P.
Nadeau
and
D. N.
Straub
, “
Basin and channel contributions to a model Antarctic Circumpolar Current
,”
J. Phys. Oceanogr.
39
,
986
1002
(
2009
).
38.
A.
Arakawa
, “
Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I
,”
J. Comput. Phys.
1
,
119
143
(
1966
).
39.
I. M.
Held
and
V. D.
Larichev
, “
A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane
,”
J. Atmos. Sci.
53
,
946
952
(
1996
).
40.
D.
Schecter
,
D.
Dubin
,
K.
Fine
, and
C.
Driscoll
, “
Vortex crystals from 2d Euler flow: Experiment and simulation
,”
Phys. Fluids
11
,
905
(
1999
).
41.
D.
Dritschel
and
R.
Scott
, “
Jet sharpening by turbulent mixing
,”
Philos. Trans. R. Soc., A
369
,
754
770
(
2011
).
42.
See supplementary material available at http://dx.doi.org/10.1063/1.4904878 for Movie 1 shows the temporal evolution of the kinetic energy field and of the potential vorticity field in the upper layer and in the lower layer, in a case without bottom friction (rR/U = 0). There is a concomitant inverse cascade of kinetic energy on the horizontal with barotropization on the vertical. Movie 2 shows the same fields in the case of intermediate bottom friction (rR/U ∼ 1), which leads to surface intensified point vortices with a typical horizontal length scale given by the Rossby radius of deformation. Movie 3 shows the same fields in the case of large bottom friction (rR/U ≫ 1), which leads to the emergence of ribbons (meandering surface intensified sharp jets).
43.
D.
Dritschel
and
M.
McIntyre
, “
Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers
,”
J. Atmos. Sci.
65
,
855
874
(
2008
).
44.
L.-P.
Nadeau
and
D. N.
Straub
, “
Influence of wind stress, wind stress curl, and bottom friction on the transport of a model Antarctic Circumpolar Ccurrent.
,”
J. Phys. Oceanogr.
42
,
207
222
(
2012
).
45.
P. B.
Rhines
and
W. R.
Young
, “
Homogenization of potential vorticity in planetary gyres
,”
J. Fluid Mech.
122
,
347
367
(
1982
).
46.
J.
Esler
, “
The turbulent equilibration of an unstable baroclinic jet
,”
J. Fluid Mech.
599
,
241
268
(
2008
).
47.
B.
Willcocks
and
J.
Esler
, “
Nonlinear baroclinic equilibration in the presence of Ekman friction
,”
J. Phys. Oceanogr.
42
,
225
242
(
2012
).
48.
J.
LaCasce
and
K.
Brink
, “
Geostrophic turbulence over a slope
,”
J. Phys. Oceanogr.
30
,
1305
1324
(
2000
).
49.
K. S.
Smith
and
G. K.
Vallis
, “
The scales and equilibration of midocean eddies: Forced-dissipative flow
,”
J. Phys. Oceanogr.
32
,
1699
1720
(
2002
).
50.
G.
Roullet
,
J. C.
McWilliams
,
X.
Capet
, and
M. J.
Molemaker
, “
Properties of steady geostrophic turbulence with isopycnal outcropping
,”
J. Phys. Oceanogr.
42
,
18
38
(
2012
).
51.
K. S.
Smith
and
G. K.
Vallis
, “
The scales and equilibration of midocean eddies: Freely evolving flow
,”
J. Phys. Oceanogr.
31
,
554
571
(
2001
).
52.
L.-L.
Fu
and
G. R.
Flierl
, “
Nonlinear energy and enstrophy transfers in a realistically stratified ocean
,”
Dyn. Atmos. Oceans
4
,
219
246
(
1980
).

Supplementary Material

You do not currently have access to this content.