We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macroscopical measurements indicate no noticeable difference between classical and superfluid flows, thereby providing evidence of the same dissipation scaling laws in the two phases. A detailed study of the evolution of the hysteresis cycle with the Reynolds number supports the idea that the stability of the steady states of classical turbulence in this closed flow is partly governed by the dissipative scales. It also supports the idea that the normal and the superfluid components at these temperatures (1.6 K) are locked down to the dissipative length scale.

1.
L.
Skrbek
and
K. R.
Sreenivasan
, “
Developed quantum turbulence and its decay
,”
Phys. Fluids
24
,
011301
(
2012
).
2.
L.
Skrbek
, “
Quantum turbulence
,”
J. Phys.: Conf. Ser.
318
,
012004
(
2011
).
3.
P. L.
Walstrom
 et al, “
Turbulent flow pressure drop in various He II transfer system components
,”
Cryogenics
28
101-109 (
1988
).
4.
J.
Maurer
and
P.
Tabeling
, “
Local investigation of superfluid turbulence
,”
EPL
43
,
29
(
1998
).
5.
J.
Salort
 et al, “
Turbulent velocity spectra in superfluid flows
,”
Phys. Fluids
22
,
125102
(
2010
);
D.
Duri
 et al, “
Liquid helium inertial jet for comparative study of classical and quantum turbulence
,”
Rev. Sci. Instrum.
82
,
115109
(
2011
).
[PubMed]
6.
M.
Abid
 et al, “
Experimental and numerical investigations of low-temperature superfluid turbulence
,”
Eur. J. Mech. B-Fluid
17
,
665
(
1998
).
7.
M.
Blazkova
 et al, “
Transition from laminar to turbulent drag in flow due to a vibrating quartz fork
,”
Phys. Rev. E
75
,
025302(R)
(
2007
).
8.
D. I.
Bradley
 et al, “
Transition to turbulence for a quartz tuning fork in superfluid 4He
,”
J. Low Temp. Phys
156
,
116
(
2009
).
9.
M. R.
Smith
 et al, “
Observed drag crisis on a sphere in flowing He I and He II
,”
Phys. Fluids
11
,
751
(
1999
).
10.
D. I.
Bradley
 et al, “
Turbulent drag on a low-frequency vibrating grid in superfluid 4He at very low temperatures
,”
Phys. Rev. B
85
,
224533
(
2012
).
11.
T.
Zhang
and
S. W.
Van Sciver
, “
Large-scale turbulent flow around a cylinder in counterflow superfluid 4He
,”
Nat. Phys.
1
,
36
(
2005
).
12.
J.
Salort
 et al, “
Energy cascade and the four-fifths law in superfluid turbulence
,”
EPL
97
,
34006
(
2012
).
13.
D.
Duri
, “
Mise en évidence expérimentale de l’intermittence dans un jet cryogénique turbulent d’hélium normal et superfluide
,” Ph.D. thesis,
Université Joseph Fourier
,
2012
.
14.
K. W.
Schwarz
and
J. R.
Rozen
, “
Anomalous decay of turbulence in superfluid 4He
,”
Phys. Rev. Lett.
66
(
14
),
1898
(
1991
).
15.
C. F.
Barenghi
,
C. L.
Swanson
, and
R. J.
Donnelly
, “
Emerging issues in helium turbulence
,”
J. Low. Temp. Phys.
100
(
5-6
),
385
(
1995
).
16.
W. F.
Vinen
and
J. J.
Niemela
, “
Quantum turbulence
,”
J. Low. Temp. Phys.
128
(
5-6
),
167
(
2002
).
17.
F.
Ravelet
 et al, “
Multistability and memory effect in a highly turbulent flow: Experimental evidence for a global bifurcation
,”
Phys. Rev. Lett.
93
,
164501
(
2004
).
18.
P.-P.
Cortet
 et al, “
Experimental evidence of a phase transition in a closed turbulent flow
,”
Phys. Rev. Lett.
105
,
214501
(
2010
);
[PubMed]
P.-P.
Cortet
, “
Susceptibility divergence, phase transition and multistability of a highly turbulent closed flow
,”
J. Stat. Mech.
2011
,
P07012
(
2011
).
19.
B.
Saint-Michel
, “
L’écoulement de von Kármán comme paradigme de la physique statistique hors de l’équilibre
,” Ph.D. thesis,
Université Pierre et Marie Curie
,
2013
.
20.
B.
Rousset
 et al, “
Superfluid High REynolds von Kámán experiment
,”
Rev. Sci. Instrum.
85
,
103908
(
2014
).
21.
L.
Marié
, “
Transport de moment cinétique et de champ magnétique par un écoulement tourbillonnaire turbulent: Influence de la rotation
,” Ph.D. thesis,
Université Paris Diderot
,
2003
.
22.
B.
Saint-Michel
,
B.
Dubrulle
,
L.
Marié
,
F.
Ravelet
, and
F.
Daviaud
, “
Influence of Reynolds number and forcing type in a turbulent von Kármán flow
,”
New J. Phys.
16
,
063037
(
2014
).
23.
F.
Ravelet
 et al, “
Supercritical transition to turbulence in an inertially driven von Kármán closed flow
,”
J. Fluid. Mech.
601
,
339
(
2008
).
24.
U.
Frisch
,
Turbulence
(
Cambridge University Press
,
1995
).
25.
K. R.
Sreenivasan
, “
An update on the energy dissipation rate in isotropic turbulence
,”
Phys. Fluids
10
,
528529
(
1998
).
26.
S. B.
Pope
,
Turbulent flows
(
CUP
,
Cambridge
,
2000
).
27.
L.
Chevillard
 et al, “
A phenomenological theory of Eulerian and Lagrangian velocity fluctuations in turbulent flows
,”
C.R. Physique
13
,
899
(
2012
).
28.
L.
Onsager
, “
Statistical hydrodynamics
,”
Nuovo Cimento
6
(
Suppl.
),
279287
(
1949
).
29.
J.
Duchon
and
R.
Robert
, “
Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations
,”
Nonlinearity
13
,
249255
(
2000
).
30.
G. L.
Eyink
and
K. R.
Sreenivasan
, “
Onsager and the theory of hydrodynamic turbulence
,”
Rev. Mod. Phys.
78
,
87135
(
2006
).
31.
R.
Monchaux
 et al, “
Fluctuation-dissipation relations and statistical temperatures in a turbulent von Kármán flow
,”
Phys. Rev. Lett.
101
(
17
),
174502
(
2008
).
32.
B.
Rousset
 et al, “
Pressure drop and transient heat transport in forced flow single phase helium II at high Reynolds numbers
,”
Cryogenics
34
, 317-320 (
1994
).
33.
J.
Nedić
 et al, “
Axisymmetric turbulent wakes with new nonequilibrium similarity scalings
,”
Phys. Rev. Lett.
111
,
144503
(
2013
).
34.
S.
Babuin
 et al, “
Effective viscosity in quantum turbulence: A steady-state approach
,”
EPL
106
,
24006
(
2014
).
You do not currently have access to this content.