This investigation analyzes the effect of vortex wakes on the Lagrangian displacement of particles induced by the passage of an obstacle in a two-dimensional incompressible and inviscid fluid. In addition to the trajectories of individual particles, we also study their drift and the corresponding total drift areas in the Föppl and Kirchhoff potential flow models. Our findings, which are obtained numerically and in some regimes are also supported by asymptotic analysis, are compared to the wakeless potential flow which serves as a reference. We show that in the presence of the Föppl vortex wake, some of the particles follow more complicated trajectories featuring a second loop. The appearance of an additional stagnation point in the Föppl flow is identified as a source of this effect. It is also demonstrated that, while the total drift area increases with the size of the wake for large vortex strengths, it is actually decreased for small circulation values. On the other hand, the Kirchhoff flow model is shown to have an unbounded total drift area. By providing a systematic account of the wake effects on the drift, the results of this study will allow for more accurate modeling of hydrodynamic stirring.

1.
S.
Childress
,
An Introduction to Theoretical Fluid Mechanics
,
Courant Lecture Notes in Mathematics.
(
American Mathematical Society, Courant Institute of Mathematical Sciences
,
2009
).
2.
I.
Eames
, “
The concept of drift and its application to multiphase and multibody problems
,”
Philos. Trans. R. Soc., A
361
,
2951
2966
(
2003
).
3.
J.-L.
Thiffeault
and
S.
Childress
, “
Stirring by swimming bodies
,”
Phys. Lett. A
374
,
3487
3490
(
2010
).
4.
C.
Jung
,
T.
Tél
, and
E.
Ziemniak
, “
Application of scattering chaos to particle transport in a hydrodynamical flow
,”
Chaos
3
,
555
568
(
1993
).
5.
E. M.
Ziemniak
,
C.
Jung
, and
T.
Tél
, “
Tracer dynamics in open hydrodynamical flows as chaotic scattering
,”
Phys. D
76
,
123
146
(
1994
).
6.
W. H.
Munk
, “
Abyssal recipes
,”
Deep-Sea Res.
13
,
707
730
(
1966
).
7.
K.
Katija
and
J. O.
Dabiri
, “
A viscosity-enhanced mechanism for biogenic ocean mixing
,”
Nature
460
,
624
626
(
2009
).
8.
D. O.
Pushkin
,
H.
Shum
, and
J. M.
Yeomans
, “
Fluid transport by individual microswimmers
,”
J. Fluid Mech.
726
,
5
25
(
2013
).
9.
J.
Clerk-Maxwell
, “
On the displacement in a case of fluid motion
,”
Proc. London Math. Soc.
3
,
82
87
(
1870
).
10.
L. M.
Milne-Thomson
,
Theoretical Hydrodynamics
(
Dover
,
1968
).
11.
R.
Levien
,
“The elastica: A mathematical history,” Technical Report UCB/EECS-2008-103
(
EECS Department, University of California
, Berkeley,
2008
), URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-103.html.
12.
Ch.
Darwin
, “
Note on hydrodynamics
,”
Math. Proc. Cambridge Philos. Soc.
49
,
342
354
(
1953
).
13.
C.-S.
Yih
, “
New derivations of Darwin’s theorem
,”
J. Fluid Mech.
152
,
163
172
(
1985
).
14.
T.
Brooke Benjamin
, “
Note on added mass and drift
,”
J. Fluid Mech.
169
,
251
256
(
1986
).
15.
C.-S.
Yih
, “
Evolution of Darwinian drift
,”
J. Fluid Mech.
347
,
1
11
(
1997
).
16.
I.
Eames
,
S. E.
Belcher
, and
J. C. R.
Hunt
, “
Drift, partial drift and Darwin’s proposition
,”
J. Fluid Mech.
275
,
201
223
(
1994
).
17.
J.
Bataille
,
M.
Lance
, and
J. L.
Marie
, “
Some aspects of the modeling of bubbly flows
,” in
Phase-Interface Phenomena in Multiphase Flow, Proceedings of the International Centre for Heat and Mass Transfer
, edited by
G. F.
Hewitt
,
F.
Mayinger
, and
J. R.
Riznic
(
Hemisphere Publishing Corporation
,
New York
,
1991
), pp.
179
193
.
18.
I.
Eames
and
M. E.
McIntyre
, “
On the connection between Stokes drift and Darwin drift
,”
Math. Proc. Cambridge Philos. Soc.
126
,
171
174
(
1999
).
19.
J. O.
Dabiri
, “
Nore on the induced Lagrangian drift and added-mass of a vortex
,”
J. Fluid Mech.
547
,
105
113
(
2006
).
20.
Z.
Lin
,
J.-L.
Thiffeault
, and
S.
Childress
, “
Stirring by squirmers
,”
J. Fluid Mech.
669
,
167
177
(
2011
).
21.
R.
Camassa
,
R. M.
McLaughlin
,
M. N. J.
Moore
, and
A.
Vaidya
, “
Brachistochrones in potential flow and the connection to Darwin’s theorem
,”
Phys. Lett. A.
372
,
6742
6749
(
2008
).
22.
G. I.
Taylor
, “
The energy of a body moving in an infinite fluid, with an application to airships
,”
Proc. R. Soc. A.
120
,
13
(
1928
).
23.
L.
Landweber
and
C.-S.
Yih
, “
Forces, moments, and added masses for rankine bodies
,”
J. Fluid Mech.
1
,
319
336
(
1956
).
24.
V. V.
Sychev
,
A. I.
Ruban
,
V. V.
Sychev
, and
G. L.
Korolev
,
Asymptotic Theory of Separated Flows
(
Cambridge University Press
,
1998
).
25.
L.
Föppl
, “
Wirbelbewegung hinter einem Kreiscylinder
,”
Sitzb. d. k. Bayr. Akad. d. Wiss.
1
,
1
17
(
1913
).
26.
A.
Elcrat
,
B.
Fornberg
,
M.
Horn
, and
K.
Miller
, “
Some steady vortex flows past a circular cylinder
,”
J. Fluid Mech.
409
,
13
27
(
2000
).
27.
B.
Protas
, “
Higher-order Föppl models of steady wake flows
,”
Phys. Fluids
18
,
117109
(
2006
).
28.
S.
Tang
and
N.
Aubry
, “
On the symmetry breaking instability leading to vortex shedding
,”
Phys. Fluids
9
,
2550
2561
(
1997
).
29.
F.
Li
and
N.
Aubry
, “
Feedback control of a flow past a cylinder via transverse motion
,”
Phys. Fluids
15
,
2163
2176
(
2003
).
30.
B.
Protas
, “
Linear feedback stabilization of laminar vortex shedding based on a point vortex model
,”
Phys. Fluids
16
,
4473
4488
(
2004
).
31.
B.
Protas
, “
Center manifold analysis of a point-vortex model of vortex shedding with control
,”
Phys. D (Amsterdam, Neth.)
228
,
179
187
(
2007
).
32.
B.
Protas
, “
Vortex dynamics models in flow control problems
,”
Nonlinearity
21
, R203–R250 (
2008
), invited paper.
33.
T.
Levi-Civita
, “
Scie e leggi di reistenza
,”
Rend. Circ. Mat. Palermo
23
,
1
37
(
1907
).
34.
S.
Brodetsky
, “
Discontinuous fluid motion past circular and elliptic cylinders
,”
Proc. R. Soc. London, Ser. A
102
,
542
553
(
1923
).
35.
IEEE Computer Society. Ieee standard for floating-point arithmetic, August 2008. IEEE. doi:.
36.
See supplementary material at http://dx.doi.org/10.1063/1.4903066 for animated versions of particle trajectories in wakeless potential, Föppl and Kirchhoff flows.
37.
I.
Eames
,
D.
Gobby
, and
S. B.
Dalziel
, “
Fluid displacement by Stokes flow past a spherical droplet
,”
J. Fluid Mech.
485
,
67
85
(
2003
).
38.
D. G.
Crowdy
, “
Analytical solutions for uniform potential flow past multiple cylinders
,”
Eur. J. Mech. B/Fluids
25
,
459
470
(
2006
).
39.
A.
Elcrat
,
M.
Ferlauto
, and
L.
Zannetti
, “
Point vortex model for asymmetric inviscid wakes past bluff bodies
,”
Fluid Dyn. Res.
46
,
031407
(
2014
).

Supplementary Material

You do not currently have access to this content.