Compressible granular materials are involved in many applications, some of them being related to energetic porous media. Gas permeation effects are important during their compaction stage, as well as their eventual chemical decomposition. Also, many situations involve porous media separated from pure fluids through two-phase interfaces. It is thus important to develop theoretical and numerical formulations to deal with granular materials in the presence of both two-phase interfaces and gas permeation effects. Similar topic was addressed for fluid mixtures and interfaces with the Discrete Equations Method (DEM) [R. Abgrall and R. Saurel, “Discrete equations for physical and numerical compressible multiphase mixtures,” J. Comput. Phys. 186(2), 361-396 (2003)] but it seemed impossible to extend this approach to granular media as intergranular stress [K. K. Kuo, V. Yang, and B. B. Moore, “Intragranular stress, particle-wall friction and speed of sound in granular propellant beds,” J. Ballist. 4(1), 697-730 (1980)] and associated configuration energy [J. B. Bdzil, R. Menikoff, S. F. Son, A. K. Kapila, and D. S. Stewart, “Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues,” Phys. Fluids 11, 378 (1999)] were present with significant effects. An approach to deal with fluid-porous media interfaces was derived in Saurel et al. [“Modelling dynamic and irreversible powder compaction,” J. Fluid Mech. 664, 348-396 (2010)] but its validity was restricted to weak velocity disequilibrium only. Thanks to a deeper analysis, the DEM is successfully extended to granular media modelling in the present paper. It results in an enhanced version of the Baer and Nunziato [“A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials,” Int. J. Multiphase Flow 12(6), 861-889 (1986)] model as symmetry of the formulation is now preserved. Several computational examples are shown to validate and illustrate method’s capabilities.

1.
B. W.
Asay
,
S. F.
Son
, and
J. B.
Bdzil
, “
The role of gas permeation in convective burning
,”
Int. J. Multiphase Flow
22
(
5
),
923
952
(
1996
).
2.
K.
Andreev
, “
The problem of the mechanism of the transition from burning to detonation in explosives
,”
J. Phys. Chem.
17
,
533
537
(
1944
).
3.
J. B.
Bdzil
,
R.
Menikoff
,
S. F.
Son
,
A. K.
Kapila
, and
D. S.
Stewart
, “
Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues
,”
Phys. Fluids
11
,
378
(
1999
).
4.
M. R.
Baer
and
J. W.
Nunziato
, “
A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials
,”
Int. J. Multiphase Flow
12
(
6
),
861
889
(
1986
).
5.
H.
Krier
,
S.
Rajan
, and
W. F.
Van Tassell
, “
Flame spreading and combustion in packed beds of propellant grains
,”
AIAA J.
14
(
3
),
301
309
(
1976
).
6.
P. S.
Gough
and
F. J.
Zwartz
, “
Modeling heterogeneous two-phase reacting flow
,”
AIAA J.
17
(
1
),
17
25
(
1979
).
7.
R.
Saurel
and
R.
Abgrall
, “
A multiphase Godunov method for compressible multifluid and multiphase flows
,”
J. Comput. Phys.
150
,
425
467
(
1999
).
8.
A. K.
Kapila
,
R.
Menikoff
,
J. B.
Bdzil
,
S. F.
Son
, and
D. S.
Stewart
, “
Two-phase modeling of deflagration to detonation transition in granular materials: Reduced equations
,”
Phys. Fluids
13
(
10
),
3002
3024
(
2001
).
9.
R.
Abgrall
and
R.
Saurel
, “
Discrete equations for physical and numerical compressible multiphase mixtures
,”
J. Comput. Phys.
186
(
2
),
361
396
(
2003
).
10.
R.
Saurel
,
S.
Gavrilyuk
, and
F.
Renaud
, “
A multiphase model with internal degrees of freedom: Application to shock-bubble interaction
,”
J. Fluid Mech.
495
(
1
),
283
321
(
2003
).
11.
A.
Chinnayya
,
E.
Daniel
, and
R.
Saurel
, “
Modelling detonation waves in heterogeneous energetic materials
,”
J. Comput. Phys.
196
(
2
),
490
538
(
2004
).
12.
O.
Le Métayer
,
J.
Massoni
, and
R.
Saurel
, “
Modelling evaporation fronts with reactive Riemann solvers
,”
J. Comput. Phys.
205
(
2
),
567
610
(
2005
).
13.
R. A.
Berry
,
R.
Saurel
, and
O.
Lemetayer
, “
The discrete equation method (DEM) for fully compressible, two-phase flows in ducts of spatially varying cross-section
,”
Nucl. Eng. Des.
240
(
11
),
3797
3818
(
2010
).
14.
R.
Saurel
,
N.
Favrie
,
F.
Petitpas
,
M. H.
Lallemand
, and
S.
Gavrilyuk
, “
Modelling dynamic and irreversible powder compaction
,”
J. Fluid Mech.
664
,
348
396
(
2010
).
15.
K. K.
Kuo
,
V.
Yang
, and
B. B.
Moore
, “
Intragranular stress particle-wall friction and speed of sound in granular propellant beds
,”
J. Ballist.
4
(
1
),
697
730
(
1980
).
16.
A. K.
Kapila
,
S. F.
Son
,
J. B.
Bdzil
,
R.
Menikoff
, and
D. S.
Stewart
, “
Two-phase modeling of DDT: Structure of the velocity-relaxation zone
,”
Phys. Fluids
9
(
12
),
3885
3897
(
1997
).
17.
R.
Saurel
,
O.
Le Metayer
,
J.
Massoni
, and
S.
Gavrilyuk
, “
Shock jump relations for multiphase mixtures with stiff mechanical relaxation
,”
Shock Waves
16
(
3
),
209
232
(
2007
).
18.
D. W.
Schwendeman
,
C. W.
Wahle
, and
A. K.
Kapila
, “
The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow
,”
J. Comput. Phys.
212
(
2
),
490
526
(
2006
).
19.
E. F.
Toro
,
M.
Spruce
, and
W.
Speares
, “
Restoration of the contact surface in the HLL -Riemann solver
,”
Shock waves
4
(
1
),
25
34
(
1994
).
20.
S. K.
Godunov
, “
A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics
,”
Mat. Sb.
89
(
3
),
271
306
(
1959
).
21.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics
(
Springer
,
Berlin
,
1997
).
22.
S. L.
Gavrilyuk
,
N.
Favrie
, and
R.
Saurel
, “
Modelling wave dynamics of compressible elastic materials
,”
J. Comput. Phys.
227
(
5
),
2941
2969
(
2008
).
23.
S.
Ergun
, “
Fluid flow through packed columns
,”
Chem. Eng. Prog.
48
,
89
94
(
1952
).
24.
R. R.
Bernecker
and
D.
Price
, “
Studies in the transition to detonation in granular explosives
,”
Combust. Flame
22
,
111
129
(
1974
).
25.
J.
Massoni
,
R.
Saurel
,
G.
Baudin
, and
G.
Demol
, “
A mechanistic model for shock initiation of solid explosives
,”
Phys. Fluids
11
(
3
),
710
736
(
1999
).
26.
R.
Saurel
,
F.
Petitpas
, and
R.
Abgrall
, “
Modeling phase transition in metastable liquids. Application to flashing and cavitating flows
,”
J. Fluid Mech.
607
,
313
350
(
2008
).
27.
J.
Kang
,
P. B.
Butler
, and
M. R.
Baer
, “
A thermomechanical analysis of hot spot formation in condensed-phase, energetic materials
,”
Combust. Flame
89
(
2
),
117
139
(
1992
).
You do not currently have access to this content.