Buoyancy-driven single bubble behaviour in a vertical Hele-Shaw cell with various gap Reynolds numbers Re(h/d)2 has been studied. Two gap thicknesses, h = 0.5 mm (Re(h/d)2 = 1.0–8.5) and 1 mm (Re(h/d)2 = 6.0–50) were used to represent low and high gap Reynolds number flow. Periodic shape oscillation and path vibration were observed once the gap Reynolds number exceeds the critical value of 8.5. The bubble behaviour was also numerically simulated by taking a two-dimensional volume of fluid method coupled with a continuum surface force model and a wall friction model in the commercial computational fluid dynamics package Fluent. By adjusting the viscous resistance values, the bubble dynamics in the two gap thicknesses can be simulated. For the main flow properties including shape, path, terminal velocity, horizontal vibration, and shape oscillation, good agreement is obtained between experiment and simulation. The estimated terminal velocity is 10%–50% higher than the observed one when the bubble diameter d ≤ 5 mm, h = 0.5 mm and 9% higher when d ≤ 18 mm, h = 1.0 mm. The estimated oscillation frequency is 50% higher than the observed value. Three-dimensional effects and spurious vortices are most likely the reason for this inaccuracy. The simulation confirms that the thin liquid films between gas bubbles and the cell walls have a limited effect on the bubble dynamics.

1.
G. I.
Taylor
and
P. G.
Saffman
, “
A note on the motion of bubbles in a Hele-Shaw cell and porous medium
,”
Q. J. Mech. Appl. Math.
12
,
265
279
(
1959
).
2.
A. R.
Kopf-Sill
and
G. M.
Homsy
, “
Bubble motion in a Hele-Shaw cell
,”
Phys. Fluids
31
,
18
26
(
1988
).
3.
S.
Tanveer
, “
The effect of surface tension on the shape of a Hele-Shaw cell bubble
,”
Phys. Fluids
29
,
3537
3548
(
1986
).
4.
S. R. K.
Maruvada
and
C. W.
Park
, “
Retarded motion of bubbles in Hele-Shaw cells
,”
Phys. Fluids
8
,
3229
3233
(
1996
).
5.
W.
Eck
and
J.
Siekmann
, “
On bubble motion in a Hele-Shaw cell, a possibility to study 2-phase flows under reduced gravity
,”
Ing. Arch.
47
,
153
168
(
1978
).
6.
T.
Maxworthy
, “
Bubble formation motion and interaction in a Hele-Shaw cell
,”
J. Fluid Mech.
173
,
95
114
(
1986
).
7.
R.
Collins
, “
A simple model of the plane gas bubble in a finite liquid
,”
J. Fluid Mech.
22
,
763
771
(
1965
).
8.
F.
Riegels
, “
Zur kritik des Hele-Shaw-versuchs
,”
Z. Angew. Math. Mech.
18
,
95
106
(
1938
).
9.
S. G.
Huisman
,
P.
Ern
, and
V.
Roig
, “
Interaction and coalescence of large bubbles rising in a thin gap
,”
Phys. Rev. E
85
,
027302
(
2012
).
10.
E.
Kelley
and
M.
Wu
, “
Path instabilities of rising air bubbles in a Hele-Shaw cell
,”
Phys. Rev. Lett.
79
,
1265
1268
(
1997
).
11.
J. W. M.
Bush
, “
The anomalous wake accompanying bubbles rising in a thin gap: a mechanically forced Marangoni flow
,”
J. Fluid Mech.
352
,
283
303
(
1997
).
12.
J. W. M.
Bush
and
I.
Eames
, “
Fluid displacement by high Reynolds number bubble motion in a thin gap
,”
Int. J. Multiphase Flow
24
,
411
430
(
1998
).
13.
M.
Kawaguchi
,
S.
Niga
,
N.
Gou
, and
K.
Miyake
, “
Buoyancy-driven path instabilities of bubble rising in simple and polymer solutions of Hele-Shaw cell
,”
J. Phys. Soc. Jpn.
75
,
124401
(
2006
).
14.
H.
Kozuka
,
Y.
Ikeda
, and
M.
Kawaguchi
, “
Path instabilities of bubble rising in polymer solutions of Hele-Shaw cell
,”
J. Phys. Soc. Jpn.
78
,
114604
(
2009
).
15.
M.
Yamamoto
and
M.
Kawaguchi
, “
Differences in path instabilities between a bubble rising in water and in aqueous polymer solution in a Hele-Shaw cell in the transient and steady states
,”
J. Dispersion Sci. Technol.
32
,
1445
1451
(
2011
).
16.
V.
Roig
,
M.
Roudet
,
F.
Risso
, and
A.
Billet
, “
Dynamics of a high-Reynolds-number bubble rising within a thin gap
,”
J. Fluid Mech.
707
,
444
466
(
2012
).
17.
D.
Ma
,
M.
Liu
,
Y.
Zu
, and
C.
Tang
, “
Two-dimensional volume of fluid simulation studies on single bubble formation and dynamics in bubble columns
,”
Chem. Eng. Sci.
72
,
61
77
(
2012
).
18.
W.
Boos
and
A.
Thess
, “
Thermocapillary flow in a Hele-Shaw cell
,”
J. Fluid Mech.
352
,
305
330
(
1997
).
19.
P.
Gondret
and
M.
Rabaud
, “
Shear instability of two-fluid parallel flow in a Hele-Shaw cell
,”
Phys. Fluids
9
,
3267
3274
(
1997
).
20.
A.
Tatulchenkov
and
A.
Cebers
, “
Complex bubble dynamics in a vertical Hele-Shaw cell
,”
Phys. Fluids
17
,
107103
(
2005
).
21.
N.
Jarrige
,
I.
Bou malham
,
J.
Martin
,
N.
Rakotomalala
,
D.
Salin
, and
L.
Talon
, “
Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells
,”
Phys. Rev. E
81
,
066331
(
2010
).
22.
R.
Krishna
and
J. M.
van baten
, “
Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulation vs experiment
,”
Int. Commun. Heat Mass Transfer
26
,
965
974
(
1999
).
23.
R.
Krishna
and
J. M.
van baten
, “
Simulating the motion of gas bubbles in a liquid
,”
Nature
398
,
208
(
1999
).
24.
B.
Klaasen
,
F.
Verhaeghe
,
B.
Blanpain
, and
J.
Fransaer
, “
A study of gas bubbles in liquid mercury in a vertical Hele-Shaw cell
,”
Exp. Fluids
55
,
1652
(
2014
).
25.
J. M.
van baten
and
R.
Krishna
, “
CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries
,”
Chem. Eng. Sci.
59
,
2535
2545
(
2004
).
26.
G. S.
Beavers
,
E. M.
Sparrow
, and
R. A.
Magnuson
, “
Experiments on breakdown of laminar flow in a parallel-plate channel
,”
Int. J. Heat Mass Transfer
13
,
809
815
(
1970
).
27.
I.
Lunati
and
D.
Or
, “
Gravity-driven slug motion in capillary tubes
,”
Phys. Fluids
21
,
052003
(
2009
).
28.
M.
van sint annaland
,
W.
Dijkhuizen
,
N. G.
Deen
, and
J. A. M.
Kuipers
, “
Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method
,”
AIChE J.
52
,
99
110
(
2006
).
29.
G.
Tryggvason
,
R.
Scardovelli
, and
S.
Zaleski
,
Direct Numerical Simulations of Gas-Liquid Multiphase Flows
(
Cambridge University Press
,
New York
,
2011
), p.
105
.
30.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1991
).
31.
M.
Seifollahi
,
E.
Shirani
, and
N.
Ashgriz
, “
An improved method for calculation of interface pressure force in PLIC-VOF methods
,”
Eur. J. Mech. B/Fluids
27
,
1
23
(
2008
).
32.
S.
Lin
,
Y.
Chin
,
C.
Wu
,
J.
Lin
, and
Y.
Chen
, “
A pressure correction-volume of fluid method for simulation of two-phase flows
,”
Int. J. Numer. Methods Fluids
68
,
181
195
(
2010
).
33.
D. L.
Youngs
,
“Time-dependent multi-material flow with large fluid distortion,”
in
Numerical Methods for Fluid Dynamics
, edited by
K. M.
Morton
and
M. J.
Baines
(
Academic Press
,
New York
,
1982
), p.
273
.
34.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Academic press
,
New York
,
1978
), p.
17
.
35.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T. M.
Kendall
, “
Mechanisms for generating coherent packets of hairpin vortices in channel flow
,”
J. Fluid Mech.
387
,
353
396
(
1999
).
36.
V.
Kolar
, “
Vortex identification: New requirements and limitations
,”
Int. J. Heat Fluid Flow
28
,
638
652
(
2007
).
37.
B. G. M.
Wachem
and
J. C.
Schouten
, “
Experimental validation of 3-D Lagrangian VOF model: Bubble shape and rise velocity
,”
AIChE J.
48
,
2744
2753
(
2002
).
38.
M. R.
Ansari
and
M. E.
Nimvari
, “
Bubble viscosity effect on internal circulation within the bubble rising due to buoyancy using the level set method
,”
Ann. Nucl. Energy
38
,
2770-2778
(
2011
).
You do not currently have access to this content.