A theoretical investigation has been conducted to study the impact of variable fluid properties on the stability of gravity-driven flow of a thin film down a heated incline. The incline is maintained at a uniform temperature which exceeds the temperature of the ambient gas above the fluid and is thus responsible for heating the thin fluid layer. The variable fluid properties are allowed to vary linearly with temperature. It is assumed that long-wave perturbations are most unstable. Based on this, a stability analysis was carried out whereby the governing linearized perturbation equations were expanded in powers of the wavenumber which is a small parameter. New interesting results illustrating how the critical Reynolds number and perturbation phase speed depend on the various dimensionless parameters have been obtained.

1.
P. L.
Kapitza
and
S. P.
Kapitza
, “
Wave flow of thin layers of viscous fluid: III. Experimental study of undulatory flow conditions
,”
Zh. Eksp. Teor. Fiz.
19
,
105
-
120
(
1949
), English translation in Collected Papers of P. L. Kapitza, edited byD. ter Haar (Pergamon, Oxford, 1965), Vol. II, pp. 690–709.
2.
T. B.
Benjamin
, “
Wave formation in laminar flow down an inclined plane
,”
J. Fluid Mech.
2
,
554
-
574
(
1957
).
3.
C.-S.
Yih
, “
Stability of liquid flow down an inclined plane
,”
Phys. Fluids
6
,
321
-
334
(
1963
).
4.
P. M. J.
Trevelyan
,
B.
Scheid
,
C.
Ruyer-Quil
, and
S.
Kalliadasis
, “
Heated falling films
,”
J. Fluid Mech.
592
,
295
-
334
(
2007
).
5.
S. J. D.
D’Alessio
,
J. P.
Pascal
,
H. A.
Jasmine
, and
K. A.
Ogden
, “
Film flow over heated wavy inclined surfaces
,”
J. Fluid Mech.
665
,
418
-
456
(
2010
).
6.
K. A.
Ogden
,
S. J. D.
D’Alessio
, and
J. P.
Pascal
, “
Gravity-driven flow over heated, porous, wavy surfaces
,”
Phys. Fluids
23
,
122102
(
2011
).
7.
D. A.
Goussis
and
R. E.
Kelly
, “
Effects of viscosity on the stability of film flow down heated or cooled inclined surfaces: Long-wavelength analysis
,”
Phys. Fluids
28
,
3207
-
3214
(
1985
).
8.
C.-C.
Hwang
and
C.-I.
Weng
, “
Non-linear stability analysis of film flow down a heated or cooled inclined plane with viscosity variation
,”
Int. J. Heat Mass Transfer
31
,
1775
-
1784
(
1988
).
9.
Y. O.
Kabova
and
V. V.
Kuznetsov
, “
Downward flow of a nonisothermal thin liquid film with variable viscosity
,”
J. Appl. Mech. Tech. Phys.
43
,
895
-
901
(
2002
).
10.
J. P.
Pascal
,
N.
Gonputh
, and
S. J. D.
D’Alessio
, “
Long-wave instability of flow with temperature dependent fluid properties down a heated incline
,”
Int. J. Eng. Sci.
70
,
73
-
90
(
2013
).
11.
J. H.
Spurk
and
N.
Aksel
,
Fluid Mechanics
, 2nd ed. (
Springer
,
Berlin, Germany
,
2008
).
12.
D. J.
Tritton
,
Physical Fluid Dynamics
(
Van Nostrand Reinhold
,
Cambridge, UK
,
1977
).
13.
S.
Kalliadasis
,
C.
Ruyer-Quil
,
B.
Scheid
, and
M. G.
Velarde
,
Falling Liquid Films
(
Springer-Verlag
,
London, UK
,
2012
).
14.
M. K.
Smith
, “
The mechanism for the long-wave instability in thin liquid films
,”
J. Fluid Mech.
217
,
469
-
485
(
1990
).
15.
See supplementary material at http://dx.doi.org/10.1063/1.4904095 for the symbolic algebra (Maple) code used to obtain the critical Reynolds number and the phase speed for the onset of instability.
16.
H.
Bénard
, “
Les tourbillons cellulaires dans une nappe liquide
,”
Rev. Gen. Sci. Pures Appl.
11
,
1261
-
1271
and 1309–1328 (
1900
).
17.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamic Stability
, 2nd ed. (
Cambridge University Press
,
Cambridge, UK
,
2004
).

Supplementary Material

You do not currently have access to this content.