We numerically study the displacement flow of two iso-viscous Newtonian fluids in an inclined two-dimensional channel, formed by two parallel plates. The results are complementary to our previous studies on displacement flows in pipes and channels. The heavier displacing fluid moves the lighter displaced fluid in the downward direction. Three dimensionless groups largely describe these flows: the densimetric Froude number (Fr), the Reynolds number (Re), and the duct inclination (β). As a first order approximation, we are able to classify different flow regimes phenomenologically in a two-dimensional (Fr; Recosβ/Fr)-plane and provide leading order expressions for the transitions between different regimes. The stabilizing and/or de-stabilizing effects of the imposed mean flow on buoyant exchange flows (zero imposed velocity) are described for a broad range of dimensionless parameters.

1.
S. M.
Taghavi
,
T.
Seon
,
D. M.
Martinez
, and
I. A.
Frigaard
, “
Buoyancy-dominated displacement flows in near-horizontal channels: The viscous limit
,”
J. Fluid Mech.
639
,
1
35
(
2009
).
2.
S. M.
Taghavi
,
K.
Alba
,
T.
Seon
,
K.
Wielage-Burchard
,
D. M.
Martinez
, and
I. A.
Frigaard
, “
Miscible displacement flows in near-horizontal ducts at low Atwood number
,”
J. Fluid Mech.
696
,
175
214
(
2012
).
3.
Z.
Yang
and
Y. C.
Yortsos
, “
Asymptotic solutions of miscible displacements in geometries of large aspect ratio
,”
Phys. Fluids
9
,
286
298
(
1997
).
4.
J.
Zhang
and
I. A.
Frigaard
, “
Dispersion effects in the miscible displacement of two fluids in a duct of large aspect ratio
,”
J. Fluid Mech.
549
,
225
251
(
2006
).
5.
N.
Rakotomalala
,
D.
Salin
, and
P.
Watzky
, “
Miscible displacement between two parallel plates: BGK lattice gas simulations
,”
J. Fluid Mech.
338
,
277
297
(
1997
).
6.
N.
Goyal
and
E.
Meiburg
, “
Miscible displacements in Hele-Shaw cells: Two-dimensional base states and their linear stability
,”
J. Fluid Mech.
558
,
329
355
(
2006
).
7.
R. M.
Oliveira
and
E.
Meiburg
, “
Miscible displacements in Hele-Shaw cells: Three-dimensional Navier-Stokes simulations
,”
J. Fluid Mech.
687
,
431
460
(
2011
).
8.
E.
Lajeunesse
,
J.
Martin
,
N.
Rakotomalala
, and
D.
Salin
, “
3D instability of miscible displacements in a Hele-Shaw cell
,”
Phys. Rev. Lett.
79
,
5254
5257
(
1997
).
9.
E.
Lajeunesse
,
J.
Martin
,
N.
Rakotomalala
,
D.
Salin
, and
Y.
Yortsos
, “
Miscible displacement in a Hele-Shaw cell at high rates
,”
J. Fluid Mech.
398
,
299
319
(
1999
).
10.
E.
Lajeunesse
,
J.
Martin
,
N.
Rakotomalala
, and
D.
Salin
, “
The threshold of the instability in miscible displacements in a Hele-Shaw cell at high rates
,”
Phys. Fluids
13
,
799
801
(
2001
).
11.
N.
Goyal
,
H.
Pichler
, and
E.
Meiburg
, “
Variable density, miscible displacements in a vertical Hele-Shaw cell: Linear stability
,”
J. Fluid Mech.
584
,
357
372
(
2007
).
12.
K.
Alba
,
S. M.
Taghavi
, and
I. A.
Frigaard
, “
Miscible density-stable displacement flows in inclined tube
,”
Phys. Fluids
24
,
123102
(
2012
).
13.
C.
Jiao
and
T.
Maxworthy
, “
An experimental study of miscible displacement with gravity-override and viscosity-contrast in a Hele-Shaw cell
,”
Exp. Fluids
44
,
781
794
(
2008
).
14.
F.
Graf
,
E.
Meiburg
, and
C.
Härtel
, “
Density-driven instabilities of miscible fluids in a Hele-Shaw cell: Linear stability analysis of the three-dimensional Stokes equations
,”
J. Fluid Mech.
451
,
261
282
(
2002
).
15.
J.
Fernandez
,
P.
Kurowski
,
P.
Petitjeans
, and
E.
Meiburg
, “
Density-driven unstable flows of miscible fluids in a Hele-Shaw cell
,”
J. Fluid Mech.
451
,
239
260
(
2002
).
16.
J.
Martin
,
N.
Rakotomalala
, and
D.
Salin
, “
Gravitational instability of miscible fluids in a Hele-Shaw cell
,”
Phys. Fluids
14
,
902
905
(
2002
).
17.
N.
Goyal
and
E.
Meiburg
, “
Unstable density stratification of miscible fluids in a vertical Hele-Shaw cell: Influence of variable viscosity on the linear stability
,”
J. Fluid Mech.
516
,
211
238
(
2004
).
18.
L.
Talon
,
N.
Goyal
, and
E.
Meiburg
, “
Variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells. Part 1. Linear stability analysis
,”
J. Fluid Mech.
721
,
268
294
(
2013
).
19.
M. O.
John
,
R. M.
Oliveira
,
F. H. C.
Heussler
, and
E.
Meiburg
, “
Variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells. Part 2. Nonlinear simulations
,”
J. Fluid Mech.
721
,
295
323
(
2013
).
20.
F.
Haudin
,
L. A.
Riolfo
,
B.
Knaepen
,
G. M.
Homsy
, and
A.
De Wit
, “
Experimental study of a buoyancy-driven instability of a miscible horizontal displacement in a Hele-Shaw cell
,”
Phys. Fluids
26
,
044102
(
2014
).
21.
Y.
Hallez
and
J.
Magnaudet
, “
Effects of channel geometry on buoyancy-driven mixing
,”
Phys. Fluids
20
,
053306
(
2008
).
22.
Y.
Hallez
and
J.
Magnaudet
, “
A numerical investigation of horizontal viscous gravity currents
,”
J. Fluid Mech.
630
,
71
91
(
2009
).
23.
Y.
Hallez
and
J.
Magnaudet
, “
Turbulence-induced secondary motion in a buoyancy-driven flow in a circular pipe
,”
Phys. Fluids
21
,
081704
(
2009
).
24.
K. C.
Sahu
,
H.
Ding
,
P.
Valluri
, and
O. K.
Matar
, “
Pressure-driven miscible two-fluid channel flow with density gradients
,”
Phys. Fluids
21
,
043603
(
2009
).
25.
K. C.
Sahu
,
H.
Ding
,
P.
Valluri
, and
O. K.
Matar
, “
Linear stability analysis and numerical simulation of miscible two-layer channel flow
,”
Phys. Fluids
21
,
042104
(
2009
).
26.
K.
Alba
,
S. M.
Taghavi
, and
I. A.
Frigaard
, “
A weighted residual method for two-layer non-Newtonian channel flows: Steady-state results and their stability
,”
J. Fluid Mech.
731
,
509
544
(
2013
).
27.
T.
Seon
,
J.-P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E. J.
Hinch
, “
Buoyant mixing of miscible fluids in tilted tubes
,”
Phys. Fluids
16
,
L103
L106
(
2004
).
28.
T.
Seon
,
J.-P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E. J.
Hinch
, “
Buoyancy driven miscible front dynamics in tilted tubes
,”
Phys. Fluids
17
,
031702
(
2005
).
29.
T.
Seon
,
J.-P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E. J.
Hinch
, “
Laser-induced fluorescence measurements of buoyancy driven mixing in tilted tubes
,”
Phys. Fluids
18
,
041701
(
2006
).
30.
T.
Seon
,
J.
Znaien
,
D.
Salin
,
J.-P.
Hulin
,
E. J.
Hinch
, and
B.
Perrin
, “
Transient buoyancy-driven front dynamics in nearly horizontal tubes
,”
Phys. Fluids
19
,
123603
(
2007
).
31.
T.
Seon
,
J.
Znaien
,
D.
Salin
,
J.-P.
Hulin
,
E. J.
Hinch
, and
B.
Perrin
, “
Front dynamics and macroscopic diffusion in buoyant mixing in a tilted tube
,”
Phys. Fluids
19
,
125105
(
2007
).
32.
K.
Alba
,
S. M.
Taghavi
, and
I. A.
Frigaard
, “
Miscible density-unstable displacement flows in inclined tube
,”
Phys. Fluids
25
,
067101
067121
(
2013
).
33.
S. M.
Taghavi
,
T.
Seon
,
K.
Wielage-Burchard
,
D. M.
Martinez
, and
I. A.
Frigaard
, “
Stationary residual layers in buoyant Newtonian displacement flows
,”
Phys. Fluids
23
,
044105
(
2011
).
34.
G.
Taylor
, “
The dispersion of matter in turbulent flow through a pipe
,”
Proc. Roy. Soc. A
223
,
446
468
(
1954
).
35.
S. M.
Taghavi
,
T.
Seon
,
D. M.
Martinez
, and
I. A.
Frigaard
, “
Influence of an imposed flow on the stability of a gravity current in a near horizontal duct
,”
Phys. Fluids
22
,
031702
(
2010
).
36.
V. G.
Harris
,
J. A. H.
Graham
, and
S.
Corrsin
, “
Further experiments in nearly homogeneous turbulent shear flow
,”
J. Fluid Mech.
81
,
657
687
(
1977
).
37.
S.
Tavoularis
and
S.
Corrsin
, “
Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 1
,”
J. Fluid Mech.
104
,
1
347
(
1981
).
38.
S.
Tavoularis
and
U.
Karnik
, “
Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence
,”
J. Fluid Mech.
204
,
457
478
(
1989
).
39.
R.
Glowinski
and
P. L.
Tallec
, “
Augmented Lagrangian and operator-splitting methods in nonlinear mechanics
,”
Phys. Fluids
19
,
084106
(
2007
).
40.
S.
Hormozi
,
K.
Wielage-Burchard
, and
I. A.
Frigaard
, “
Entry, start up and stability effects in visco-plastically lubricated pipe flows
,”
J. Fluid Mech.
673
,
432
467
(
2011
).
41.
M.
d’Olce
, “
Instabilités de cisaillement dans liécoulement concentrique de deux fluides miscibles
,” Ph.D. thesis (
These de l’Université Pierre et Marie Curie
, Orsay, France,
2008
).
42.
M.
d’Olce
,
J.
Martin
,
N.
Rakotomalala
, and
D.
Salin
, “
Pearl and mushroom instability patterns in two miscible fluids core annular flows
,”
Phys. Fluids
20
,
024104
(
2008
).
43.
M. I.
Cantero
,
J. R.
Lee
,
S.
Balachandar
, and
M. H.
Garcia
, “
On the front velocity of gravity currents
,”
J. Fluid Mech.
586
,
1
(
2007
).
44.
G. K.
Batchelor
and
J. M.
Nitsche
, “
Instability of stationary unbounded stratified fluid
,”
J. Fluid Mech.
227
,
357
391
(
1991
).
45.
C.
Hartel
,
E.
Meiburg
, and
F.
Necker
, “
Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries
,”
J. Fluid Mech.
418
,
189
212
(
2000
).
46.
M.
Debacq
,
V.
Fanguet
,
J. P.
Hulin
,
D.
Salin
, and
B.
Perrin
, “
Self-similar concentration profiles in buoyant mixing of miscible fluids in a vertical tube
,”
Phys. Fluids
13
,
3097
3100
(
2001
).
47.
M.
Debacq
,
J. P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E. J.
Hinch
, “
Buoyant mixing of miscible fluids of varying viscosities in vertical tube
,”
Phys. Fluids
15
,
3846
3855
(
2003
).
You do not currently have access to this content.