Interactions between capillary and elastic effects are relevant to a variety of applications from micro- and nano-scale manufacturing to biological systems. In this work, we investigate capillary flows in flexible, millimeter-scale cylindrical elastic tubes. We demonstrate that surface tension can cause sufficiently flexible tubes to collapse and coalesce spontaneously through non-axisymmetric buckling, and develop criteria for the initial deformation and complete collapse of a circular tube. Experimental results for capillary rise and evaporation of a liquid in a flexible tube are presented, and several regimes are seen for the equilibrium state of a flexible tube deforming under capillary pressure. Deformations of the tube walls are measured in different regimes and compared with a shell theory model. Analysis and experimental results show that despite the complex and non-axisymmetric deformed shapes of cylindrical structures, the elastocapillary length used in previous literature for flat plates and sheets can be used to predict the behavior of flexible tubes.

1.
T.
Tanaka
,
M.
Morigami
, and
N.
Atoda
, “
Mechanism of resist pattern collapse during development process
,”
Jpn. J. Appl. Phys. Part 1
32
,
6059
6064
(
1993
).
2.
C.
Py
,
P.
Reverdy
,
L.
Doppler
,
J.
Bico
,
B.
Roman
, and
C.
Baroud
, “
Capillary origami: Spontaneous wrapping of a droplet with an elastic sheet
,”
Phys. Rev. Lett.
98
,
156103
(
2007
).
3.
B.
Pokroy
,
S.
Kang
,
L.
Mahadevan
, and
J.
Aizenberg
, “
Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies
,”
Science
323
,
237
240
(
2009
).
4.
D.
Halpern
and
J. B.
Grotberg
, “
Fluid-elastic instabilities of liquid-lined flexible tubes
,”
J. Fluid Mech.
244
,
615
632
(
1992
).
5.
A. L.
Hazel
and
M.
Heil
, “
Surface-tension-induced buckling of liquid-lined elastic tubes: A model for pulmonary airway closure
,”
Proc. R. Soc. A
461
,
1847
1868
(
2005
).
6.
A. L.
Hazel
and
M.
Heil
, “
Three-dimensional airway reopening: The steady propagation of a semi-infinite bubble into a buckled elastic tube
,”
J. Fluid Mech.
478
,
47
70
(
2003
).
7.
S.
Kang
,
B.
Pokroy
,
L.
Mahadevan
, and
J.
Aizenberg
, “
Control of shape and size of nanopillar assembly by adhesion-mediated elastocapillary interaction
,”
ACS Nano
4
,
6323
6331
(
2012
).
8.
B.
Roman
and
J.
Bico
, “
Elasto-capillarity: Deforming an elastic structure with a liquid droplet
,”
J. Phys.: Condens. Matter
22
,
493101
(
2010
).
9.
H.-Y.
Kim
and
L.
Mahadevan
, “
Capillary rise between elastic sheets
,”
J. Fluid Mech.
548
,
141
150
(
2006
).
10.
J.
Bico
,
B.
Roman
,
L.
Moulin
, and
A.
Boudaoud
, “
Adhesion: Elastocapillary coalescence in wet hair
,”
Nature
432
,
690
(
1986
).
11.
J.
van Honschoten
,
M.
Escalante
,
N.
Tas
,
H.
Jansen
, and
M.
Elwenspoek
, “
Elastocapillary filling of deformable nanochannels
,”
J. Appl. Phys.
101
,
094310
(
2007
).
12.
T.
Cambau
,
J.
Bico
, and
E.
Reyssat
, “
Capillary rise between flexible walls
,”
Europhys. Lett.
96
,
24001
(
2011
).
13.
J. M.
Aristoff
,
C.
Duprat
, and
H. A.
Stone
, “
Elastocapillary imbibition
,”
Int. J. Non-Linear Mech.
46
,
648
656
(
2011
).
14.
C.
Duprat
,
J.
Aristoff
, and
H.
Stone
, “
Dynamics of elastocapillary rise
,”
J. Fluid Mech.
679
,
641
654
(
2011
).
15.
D. P.
Gaver
 III
,
D.
Halpern
,
O.
Jensen
, and
J.
Grotberg
, “
The steady motion of a semi-infinite bubble through a flexible-walled channel
,”
J. Fluid Mech.
319
,
25
65
(
1996
).
16.
J.
Grotberg
and
O.
Jensen
, “
Biofluid mechanics in flexible tubes
,”
Annu. Rev. Fluid Mech.
36
,
121
147
(
2004
).
17.
A.
Shapiro
, “
Steady flow in collapsible tubes
,”
J. Biomech. Eng.
99
,
126
147
(
1977
).
18.
M.
Heil
and
A. L.
Hazel
, “
Fluid-structure interaction in internal physiological flows
,”
Annu. Rev. Fluid Mech.
43
,
141
162
(
2011
).
19.
A.
Juel
and
A.
Heap
, “
The reopening of a collapsed fluid-filled elastic tube
,”
J. Fluid Mech.
572
,
287
310
(
2007
).
20.
A.
Heap
and
A.
Juel
, “
Anomalous bubble propagation in elastic tubes
,”
Phys. Fluids
20
,
081702
(
2008
).
21.
Y.
Yang
,
Y.
Gao
,
D.
Sun
,
M.
Asta
, and
J.
Hoyt
, “
Capillary force induced structural deformation in liquid infiltrated elastic circular tubes
,”
Phys. Rev. B
81
,
241407
(
2010
).
22.
L.
Preziosi
,
D.
Joseph
, and
G.
Beavers
, “
Infiltration of initially dry, deformable porous media
,”
Int. J. Multiphase Flow
22
,
1205
1222
(
1996
).
23.
J.
Somner
and
A.
Mortensen
, “
Forced unidirectional infiltration of deformable porous media
,”
J. Fluid Mech.
311
,
193
217
(
1996
).
24.
J.
Siddique
,
D.
Anderson
, and
A.
Bondarev
, “
Capillary rise of a liquid into a deformable porous material
,”
Phys. Fluids
21
,
013106
(
2009
).
25.
N.
Fries
and
M.
Dreyer
, “
The transition from inertial to viscous flow in capillary rise
,”
J. Colloid Interface Sci.
327
,
125
128
(
2008
).
26.
J.
Flaherty
,
J.
Keller
, and
S.
Rubinow
, “
Post buckling behavior of elastic tubes and rings with opposite sides in contact
,”
SIAM J. Appl. Math.
23
,
446
455
(
1972
).
27.
D.
Halpern
,
S.
Naire
,
O.
Jensen
, and
D. P.
Gaver
 III
, “
Unsteady bubble propagation in a flexible channel: Predictions of a viscous stick-slip instability
,”
J. Fluid Mech.
528
,
53
86
(
2005
).
28.
S.
Timoshenko
and
J.
Gere
,
Theory of Elastic Stability
(
McGraw-Hill Book Company, Inc.
,
1961
).
29.
D.
Brush
and
B.
Almroth
,
Buckling of Bars, Plates, and Shells
(
McGraw-Hill Book Company
,
1975
).
30.
L.
Mahadevan
,
A.
Vaziri
, and
M.
Das
, “
Persistence of a pinch in a pipe
,”
Europhys. Lett.
77
,
40003
(
2007
).
31.
D.
Quere
, “
Inertial capillarity
,”
Europhys. Lett.
39
,
533
538
(
1997
).
You do not currently have access to this content.