Electrohydrodynamic stresses originating from the accumulation of free and induced charges at the confined interface of a thin elastic-viscous bilayer composed of weakly conducting elastic or viscous films can stimulate permanent micropatterns such as creases, wrinkles, holes, and columns. We show that a complete linear stability analysis including all the leading order terms from the Maxwell stresses can accurately predict the key short to long-wave transitions in the length scales, as reported recently by the experimental studies. The generic potential employed for the electric field in the present work overcomes the limitations of the existing theories, which could not precisely predict the length scales especially in the short-wave limit. Importantly, unlike the experimentally reported configuration with a dielectric elastic layer confined by a weakly conducting liquid layer, the bilayers with a weakly conducting elastic layer confined by a dielectric liquid layer can develop interfacial patterns with similar periodicity at smaller field intensity. The transitions from long- to short-wave are compared and contrasted for the bilayers with leaky elastic or viscous films by tuning the field intensity, interfacial tension, and thicknesses of the films. The study unveils that the charged interface of a leaky confined bilayer experiences a larger stress due to the accumulation of free and bound charges, which can significantly reduce the length scales of the instability to the sub-micron regime. The results reported can stimulate further investigation related to the patterning and miniaturization exploiting the field induced instabilities of the elastic films.

1.
P. G. De.
Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
(
1985
).
2.
C. J.
van Oss
,
M. K.
Chaudhury
, and
R. J.
Good
, “
Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems
,”
Chem. Rev.
88
,
927
(
1988
).
3.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
(
1997
).
4.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
(
2009
).
5.
S. Y.
Chou
and
L.
Zhuang
, “
Lithographically induced self-assembly of periodic polymer micropillar arrays
,”
J. Vac. Sci. Technol., B
17
,
3197
(
1999
).
6.
S. Y.
Chou
,
L.
Zhuang
, and
L.
Guo
, “
Lithographically induced self-construction of polymer microstructures for resistless patterning
,”
Appl. Phys. Lett.
75
,
1004
(
1999
).
7.
P.
Deshpande
,
X.
Sun
, and
S. Y.
Chou
, “
Observation of dynamic behavior of lithographically induced self-assembly of supramolecular periodic pillar arrays in a homopolymer film
,”
Appl. Phys. Lett.
79
,
1688
(
2001
).
8.
S.
Herminghaus
, “
Dynamical instability of thin liquid films between conducting media
,”
Phys. Rev. Lett.
83
,
2359
(
1999
).
9.
E.
Schäffer
,
T.
Thurn-Albrecht
,
T. P.
Russell
, and
U.
Steiner
, “
Electrically induced structure formation and pattern transfer
,”
Nature (London)
403
,
874
(
2000
).
10.
E.
Schäffer
,
T.
Thurn-Albrecht
,
T. P.
Russell
, and
U.
Steiner
, “
Electrohydrodynamic instabilities in polymer films
,”
Europhys. Lett.
53
,
518
(
2001
).
11.
N.
Wu
and
W. B.
Russel
, “
Dynamics of the formation of polymeric microstructures induced by electrohydrodynamic instability
,”
Appl. Phys. Lett.
86
,
241912
(
2005
).
12.
N.
Wu
,
L. F.
Pease
, and
W. B.
Russel
, “
Toward large-scale alignment of electrohydrodynamic patterning of thin polymer films
,”
Adv. Funct. Mater.
16
,
1992
(
2006
).
13.
R.
Verma
,
A.
Sharma
,
K.
Kargupta
, and
J.
Bhaumik
, “
Electric field induced instability and pattern formation in thin liquid films
,”
Langmuir
21
,
3710
(
2005
).
14.
S.
Harkema
and
U.
Steiner
, “
Hierarchical pattern formation in thin polymer films using an electric field and vapor sorption
,”
Adv. Funct. Mater.
15
,
2016
(
2005
).
15.
N. E.
Voicu
,
S.
Harkema
, and
U.
Steiner
, “
Electric-field-Induced pattern morphologies in thin liquid films
,”
Adv. Funct. Mater.
16
,
926
(
2006
).
16.
M. D.
Dickey
,
E.
Collister
,
A.
Raines
,
P.
Tsiartas
,
T.
Holcombe
,
S. V.
Sreenivasan
,
R. T.
Bonnecaze
, and
C. G.
Willson
, “
Photocurable pillar arrays formed via electrohydrodynamic instabilities
,”
Chem. Mater.
18
,
2043
(
2006
).
17.
M. D.
Dickey
,
S.
Gupta
,
K. A.
Leach
,
E.
Collister
,
C. G.
Willson
, and
T. P.
Russell
, “
Novel 3-D structures in polymer films by coupling external and internal fields
,”
Langmuir
22
,
4315
(
2006
).
18.
S.
Srivastava
,
P. D. S.
Reddy
,
C.
Wang
,
D.
Bandyopadhyay
, and
A.
Sharma
, “
Electric field induced microstructures in thin films on physicochemically heterogeneous and patterned substrates
,”
J. Chem. Phys.
132
,
174703
(
2010
).
19.
S.
Srivastava
,
D.
Bandyopadhyay
, and
A.
Sharma
, “
Embedded microstructures by electric field induced pattern formation in interacting thin layers
,”
Langmuir
26
,
10943
(
2010
).
20.
J. R.
Melcher
and
G. I.
Taylor
, “
Electrohydrodynamics: A review of the role of interfacial shear stresses
,”
Annu. Rev. Fluid Mech.
1
,
111
(
1969
).
21.
D. A.
Saville
, “
Electrohydrodynamics: The Taylor-Melcher leaky dielectric model
,”
Annu. Rev. Fluid Mech.
29
,
27
(
1997
).
22.
L. F.
Pease
and
W. B.
Russel
, “
Electrostatically induced submicron patterning of thin perfect and leaky dielectric films: A generalized linear stability analysis
,”
J. Chem. Phys.
118
,
3790
(
2003
).
23.
G.
Tomar
,
V.
Shankar
,
A.
Sharma
, and
G.
Biswas
, “
Electrohydrodynamic instability of a confined viscoelastic liquid film
,”
J. Non-Newtonian Fluid Mech.
143
,
120
(
2007
).
24.
D.
Bandyopadhyay
,
P. D. S.
Reddy
, and
A.
Sharma
, “
Electric field and van der Waals force induced instabilities in thin viscoelastic bilayers
,”
Phys. Fluids
24
,
074106
(
2012
).
25.
N.
Arun
,
A.
Sharma
,
V. B.
Shenoy
, and
K. S.
Narayan
, “
Electric-field-controlled surface instabilities in soft elastic films
,”
Adv. Mater.
18
,
660
(
2006
).
26.
N.
Arun
,
A.
Sharma
,
P. S. G.
Pattader
,
I.
Banerjee
,
H. M.
Dixit
, and
K. S.
Narayan
, “
Electric-field-induced patterns in soft viscoelastic films: From long waves of viscous liquids to short waves of elastic solids
,”
Phys. Rev. Lett.
102
,
254502
(
2009
).
27.
J.
Sarkar
,
A.
Sharma
, and
V. B.
Shenoy
, “
Electric-field induced instabilities and morphological phase transitions in soft elastic films
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
77
,
031604
(
2008
).
28.
D.
Bandyopadhyay
,
A.
Sharma
, and
V.
Shankar
, “
Instabilities and pattern miniaturization in confined and free elastic-viscous bilayers
,”
J. Chem. Phys.
128
,
154909
(
2008
).
29.
J.
Sarkar
and
A.
Sharma
, “
A unified theory of instabilities in viscoelastic thin films: From wetting to confined films, from viscous to elastic films, and from short to long waves
,”
Langmuir
26
,
8464
(
2010
).
30.
L. F.
Pease
and
W. B.
Russel
, “
Linear stability analysis of thin leaky dielectric films subjected to electric fields
,”
J. Non-Newtonian Fluid Mech.
102
,
233
(
2002
).
31.
L. F.
Pease
and
W. B.
Russel
, “
Limitations on length scales for electrostatically induced submicrometer pillars and holes
,”
Langmuir
20
,
795
(
2004
).
32.
L. F.
Pease
and
W. B.
Russel
, “
Charge driven, electrohydrodynamic patterning of thin films
,”
J. Chem. Phys.
125
,
184716
(
2006
).
33.
V.
Shankar
and
A.
Sharma
, “
Instability of the interface between thin fiuid films subjected to electric fields
,”
J. Colloid Interface Sci.
274
,
294
(
2004
).
34.
R. V.
Craster
and
O. K.
Matar
, “
Electrically induced pattern formation in thin leaky dielectric films
,”
Phys. Fluids
17
,
032104
(
2005
).
35.
S. A.
Roberts
and
S.
Kumar
, “
AC electrohydrodynamic instabilities in thin liquid films
,”
J. Fluid Mech.
631
,
255
(
2009
).
36.
S. A.
Roberts
and
S.
Kumar
, “
Electrohydrodynamic instabilities in thin liquid trilayer films
,”
Phys. Fluids
22
,
122102
(
2010
).
37.
Z.
Lin
,
T.
Kerle
,
S. M.
Baker
,
D. A.
Hoagland
,
E.
Schäffer
,
U.
Steiner
, and
T. P.
Russell
, “
Electric field induced instabilities at liquid/liquid interfaces
,”
J. Chem. Phys.
114
,
2377
(
2001
).
38.
Z.
Lin
,
T.
Kerle
,
T. P.
Russell
,
E.
Schäffer
, and
U.
Steiner
, “
Structure formation at the interface of liquid/liquid bilayer in electric field
,”
Macromolecules
35
,
3971
(
2002
).
39.
Z.
Lin
,
T.
Kerle
,
T. P.
Russell
,
E.
Schäffer
, and
U.
Steiner
, “
Electric field induced dewetting at polymer/polymer interfaces
,”
Macromolecules
35
,
6255
(
2002
).
40.
M. D.
Morariu
,
N. E.
Voicu
,
E.
Schäffer
,
Z.
Lin
,
T. P.
Russell
, and
U.
Steiner
, “
Hierarchical structure formation and pattern replication induced by an electric field
,”
Nat. Mater.
2
,
48
(
2003
).
41.
K. A.
Leach
,
S.
Gupta
,
M. D.
Dickey
,
C. G.
Willson
, and
T. P.
Russell
, “
Electric field and dewetting induced hierarchical structure formation in polymer/polymer/air trilayers
,”
Chaos
15
,
047506
(
2005
).
42.
D.
Bandyopadhyay
,
A.
Sharma
,
U.
Thiele
, and
P. D. S.
Reddy
, “
Electric-field-induced interfacial instabilities and morphologies of thin viscous and elastic bilayers
,”
Langmuir
25
,
9108
(
2009
).
43.
P. D. S.
Reddy
,
D.
Bandyopadhyay
, and
A.
Sharma
, “
Self-organized ordered arrays of core-shell columns in viscous bilayers formed by spatially varying electric fields
,”
J. Phys. Chem. C
114
,
21020
(
2010
).
44.
P. D. S.
Reddy
,
D.
Bandyopadhyay
, and
A.
Sharma
, “
Electric-field induced instabilities in thin liquid trilayers confined between patterned electrodes
,”
J. Phys. Chem. C
116
,
22847
(
2012
).
45.
D.
Bandyopadhyay
,
A.
Sharma
, and
V.
Shankar
, “
Electric-field–and contact-force–induced tunable patterns in slipping soft elastic films
,”
EPL
89
,
36002
(
2010
).
46.
P.
Gambhire
and
R. M.
Thaokar
, “
Linear stability analysis of electrohydrodynamic instabilities at fluid interfaces in the ‘small feature’ limit
,”
Eur. Phys. J. E: Soft Matter Biol. Phys.
34
,
84
(
2011
).
47.
P.
Gambhire
and
R. M.
Thaokar
, “
Role of conductivity in the electrohydrodynamic patterning of air-liquid interfaces
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
86
,
036301
(
2012
).
48.
K.
Mondal
,
P.
Kumar
, and
D.
Bandyopadhyay
, “
Electric field induced instabilities of thin leaky bilayers: Pathways to unique morphologies and miniaturization
,”
J. Chem. Phys.
138
,
024705
(
2013
).
49.
Q.
Wang
,
L.
Zhang
, and
X.
Zhao
, “
Creasing to cratering instability in polymers under ultrahigh electric fields
,”
Phys. Rev. Lett.
106
,
118301
(
2011
).
50.
Q.
Wang
and
X.
Zhao
, “
Creasing-wrinkling transition in elastomer films under electric fields
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
88
,
042403
(
2013
).
51.
P. S. G.
Pattader
,
I.
Banerjee
,
A.
Sharma
, and
D.
Bandyopadhyay
, “
Multiscale pattern generation in viscoelastic polymer films by spatiotemporal modulation of electric field and control of rheology
,”
Adv. Funct. Mater.
21
,
324
(
2011
).
52.
See supplementary material at http://dx.doi.org/10.1063/1.4904199 for the complete steps of general linear stability analysis.
53.
X.
Niu
,
S.
Peng
,
W. W. L.
Liu
, and
P.
Sheng
, “
Characterizing and patterning of PDMS-based conducting composites
,”
Adv. Mater.
19
,
2682
(
2007
).
54.
N. J.
Pinto
,
A. A.
Acosta
,
G. P.
Sinha
, and
F. M.
Aliev
, “
Dielectric permittivity study on weakly doped conducting polymers based on polyaniline and its derivatives
,”
Synth. Met.
113
,
77
(
2000
).
55.
X.
Sheng
,
F.
Wintzenrieth
,
K. R.
Thomas
, and
U.
Steiner
, “
Intrinsic viscoelasticity in thin high-molecular-weight polymer films
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
89
,
062604
(
2014
).

Supplementary Material

You do not currently have access to this content.