We highlight the implications of electrokinetic effects on the axially pressure driven flow of a shear-thinning fluid in the gap between two concentric cylinders rotating with a relative angular velocity. Such helical flows are important from a practical perspective, as these may lead to a non-trivial alteration in the axial volume flow rate, owing to a combined interplay of the kinematics, electro-hydrodynamics, and the flow rheology. In particular, our results demonstrate the consequences of the establishment of an induced electrical potential, also known as streaming potential, on the volumetric transport, for shear thinning fluids. Our results demonstrate that an increment in the relative rotational speed induces more electrokinetic resistance into the flow. The flow rate initially decreases with increment in the relative angular speed till it reaches a minima for a given power law index, beyond which it again increases. The analytical and numerical results presented in this work bear significant consequences in the design of novel microfluidic systems governed by electrokinetic effects.

1.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1977
).
2.
A. C.
Dierckes
and
W. R.
Schowalter
, “
Helical flow of non-Newtonian polyisobutylene solution
,”
Ind. Eng. Chem. Fundam.
5
,
263
(
1966
).
3.
H. H.
Winter
, “
Helical flow of molten polymers in a cylindrical annulus
,”
Rheol. Acta
12
,
1
(
1973
).
4.
A. N.
Prokunin
,
M. L.
Fridman
, and
G. V.
Vinogradov
, “
Helical flow of non-Newtonian polymeric media
,”
Polym. Mech.
7
,
437
(
1973
).
5.
M.
Dostal
,
R.
Žitný
,
J.
Šesták
, and
M.
Houška
, “
Helical flow of power-law fluids
,”
AIChE J.
39
,
189
(
1993
).
6.
R. E.
Walker
and
D. E.
Korry
, “
Field method of evaluating annular performance of drilling fluids
,”
J. Pet. Technol.
26
,
167
(
2013
).
7.
R.
Garcia-Ramirez
, “
Helical flow of a viscoelastic fluid—An approximation towards the analysis of rotational extrusion
,”
J. Rheol.
36
,
1183
(
1992
).
8.
C.
Jepsen
and
D.
Mewes
, “
Helical flow of curing highly viscous liquids
,”
Polym. Eng. Sci.
31
,
299
(
1991
).
9.
H.
Markovitz
and
B. D.
Coleman
, “
Nonsteady helical flows of second-order fluids
,”
Phys. Fluids
7
,
833
(
1964
).
10.
D. R.
Rea
, “
Velocity profiles of a non-Newtonian fluid in helical flow
,”
J. Rheol.
11
,
125
(
1967
).
11.
C.
Fetecau
,
C.
Fetecau
, and
D.
Vieru
, “
On some helical flows of Oldroyd-B fluids
,”
Acta Mech.
189
,
53
(
2006
).
12.
B. D.
Coleman
and
W.
Noll
, “
Helical flow of general fluids
,”
J. Appl. Phys.
30
,
1508
(
1959
).
13.
J. H.
Masliyah
and
S.
Bhattacharjee
,
Electrokinetic and Colloid Transport Phenomena
(
John Wiley & Sons, Inc., Hoboken
,
NJ, USA
,
2006
).
14.
A.
Shukla
and
H.
Rehage
, “
Zeta potentials and Debye screening lengths of aqueous, viscoelastic surfactant solutions (cetyltrimethylammonium bromide/sodium salicylate system)
,”
Langmuir
24
,
8507
(
2008
).
15.
A.
Bandopadhyay
and
S.
Chakraborty
, “
Ionic size dependent electroosmosis in ion-selective microchannels and nanochannels
,”
Electrophoresis
34
,
2193
(
2013
).
16.
R. J.
Hunter
,
Zeta Potential in Colloid Science
(
Academic Press
,
London
,
1981
).
17.
R.
Schoch
,
J.
Han
, and
P.
Renaud
, “
Transport phenomena in nanofluidics
,”
Rev. Mod. Phys.
80
,
839
(
2008
).
18.
S.
Laursen
, “
Laboratory investigation of electroosmosis in bentonites and natural clays
,”
Can. Geotech. J.
34
,
664
(
1997
).
19.
S.
Chakraborty
and
S.
Ray
, “
Mass flow-rate control through time periodic electro-osmotic flows in circular microchannels
,”
Phys. Fluids
20
,
083602
(
2008
).
20.
J.
Chakraborty
,
S.
Ray
, and
S.
Chakraborty
, “
Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices
,”
Electrophoresis
33
,
419
(
2012
).
21.
Y.
Xie
,
J. D.
Sherwood
,
L.
Shui
,
A.
van den berg
, and
J. C. T.
Eijkel
, “
Strong enhancement of streaming current power by application of two phase flow
,”
Lab Chip
11
,
4006
(
2011
).
22.
W.
Olthuis
,
B.
Schippers
,
J.
Eijkel
, and
A.
van den berg
, “
Energy from streaming current and potential
,”
Sens. Actuators, B
111-112
,
385
(
2005
).
23.
A.
Bandopadhyay
and
S.
Chakraborty
, “
Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids
,”
Appl. Phys. Lett.
101
,
043905
(
2012
).
24.
B.
Kirby
,
Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
(
Cambridge University Press
,
New York
,
2010
).
25.
S.
Levine
,
J.
Marriott
,
G.
Neale
, and
N.
Epstein
, “
Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials
,”
J. Colloid Interface Sci.
52
,
136
(
1975
).
26.
A.
Bandopadhyay
,
P.
Goswami
, and
S.
Chakraborty
, “
Regimes of streaming potential in cylindrical nano-pores in presence of finite sized ions and charge induced thickening: An analytical approach
,”
J. Chem. Phys.
139
,
224503
(
2013
).
27.
A.
Bandopadhyay
and
S.
Chakraborty
, “
Steric-effect induced alterations in streaming potential and energy transfer efficiency of non-Newtonian fluids in narrow confinements
,”
Langmuir
27
,
12243
(
2011
).
28.
J.
Chakraborty
,
R.
Dey
, and
S.
Chakraborty
, “
Consistent accounting of steric effects for prediction of streaming potential in narrow confinements
,”
Phys. Rev. E
86
,
061504
(
2012
).
29.
L. G.
Leal
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
(
Cambridge University Press
,
1989
).
30.
S.
Levine
,
J.
Lowndes
,
E. J.
Watson
, and
G.
Neale
, “
A theory of capillary rise of a liquid in a vertical cylindrical tube and in a parallel-plate channel
,”
J. Colloid Interface Sci.
73
,
136
(
1980
).
31.
R.
Hunter
,
Zeta Potential in Colloid Science: Principles and Applications
(
Academic Press
,
London, New York
,
1981
).
32.
J.
Lyklema
and
J. T.
Overbeek
, “
On the interpretation of electrokinetic potentials
,”
J. Colloid Interface Sci.
16
,
501
(
1961
).
33.
J.
Yang
,
J. H.
Masliyah
, and
J. H.
Kwok
, “
Streaming potential and electroosmotic flow in heterogeneous circular microchannels with nonuniform zeta potentials: Requirements of flow rate and current continuities
,”
Langmuir
20
,
3863
(
2004
).
34.
R. L.
Batra
and
M.
Eissa
, “
Helical flow of a Sutterby model fluid
,”
Polym.-Plast. Technol. Eng.
33
,
489
(
1994
).
35.
Z.
Brož
and
N.
Epstein
, “
Electrokinetic flow through porous media composed of fine cylindrical capillaries
,”
J. Colloid Interface Sci.
56
,
605
(
1976
).
36.
A.
Bandopadhyay
and
S.
Chakraborty
, “
Combined effects of interfacial permittivity variations and finite ionic sizes on streaming potentials in nanochannels
,”
Langmuir
28
,
17552
(
2012
).
37.
P. K.
Kundu
and
I. M.
Cohen
,
Fluid Mechanics
(
Elsevier Science
,
New Delhi
,
2012
).
You do not currently have access to this content.