The wake behind a 6:1 prolate spheroid at 45° angle of attack has been studied. The three-dimensional unsteady Navier-Stokes equations have been solved numerically for Reynolds numbers Re = 50, 200, and 1000, where Re is based on the inflow velocity U0 and the minor axis D of the spheroid. The wake at the two lowest Reynolds numbers is steady and symmetric about the meridional plane. Even at Re = 1000 the near-wake, which is dominated by vortex sheets separated from the spheroid, is still steady and symmetric except in a very limited region of size 0.2D near the tip of the spheroid. However, the intermediate wake, which extends from 4D downstream of the spheroid, is distinctly asymmetric and exhibits local oscillations with an amplitude below 1% of U0. The intermediate part of the wake consists of a pair of counter-rotating vortices and the wake is deflected to the side of the strongest vortex, whereas the other vortex is partially wrapped around. It is conjectured that the wake at this particular Reynolds number is on the verge of becoming unsteady. Nevertheless, the forces and torques on the prolate spheroid show no sign whatsoever of asymmetry or unsteadiness. The resulting drag coefficients compare to within 30% with the Hölzer-Sommerfeld correlation.

1.
E. C.
Maskell
, “
Flow separation in three-dimensions
,” Royal Aircraft Est., Report Aero. 2565,
1955
.
2.
K. C.
Wang
, “
Separation patterns of boundary layer over an inclined body of revolution
,”
AIAA J.
10
,
1044
1050
(
1972
).
3.
K. C.
Wang
, “
Boundary layer over a blunt body at low incidence with circumferential reversed flow
,”
J. Fluid Mech.
72
,
49
65
(
1975
).
4.
C. E.
Costis
,
N. T.
Hoang
, and
D. P.
Telionis
, “
Laminar separating flow over a prolate spheroid
,”
J. Aircraft
26
,
810
816
(
1989
).
5.
V. C.
Patel
and
S. E.
Kim
, “
Topology of laminar flow on a spheroid at incidence
,”
Comput. Fluids
23
,
939
953
(
1994
).
6.
T.
Han
and
V. C.
Patel
, “
Flow separation on a spheroid at incidence
,”
J. Fluid Mech.
92
,
643
657
(
1979
).
7.
T. C.
Fu
,
A.
Shekarriz
,
J.
Katz
, and
T. T.
Huang
, “
The flow structure in the lee of an inclined 6:1 prolate spheroid
,”
J. Fluid Mech.
269
,
79
106
(
1994
).
8.
R. L.
Simpson
, “
Aspects of turbulent boundary-layer separation
,”
Prog. Aerospace Sci.
32
,
457
521
(
1996
).
9.
R. L.
Simpson
, “
Some observations on the structure and modeling of 3-D turbulent boundary layers and separated flow
,” in
Proceedings of the 4th International Symposium on Turbulence and Shear Flow Phenomena
, edited by
J. A. C.
Humphrey
,
T. B.
Gatski
,
J. K.
Eaton
,
R.
Friedrich
,
N.
Kasagi
, and
M. A.
Leschziner
(
2005
), Vol.
1
, pp.
1
10
.
10.
A. A.
Zamyshlyaev
and
G. R.
Shrager
, “
Fluid flow past spheroids at moderate Reynolds numbers
,”
Fluid Dyn.
39
,
376
383
(
2004
).
11.
G. K.
El Khoury
,
H. I.
Andersson
, and
B.
Pettersen
, “
Wakes behind a prolate spheroid in cross flow
,”
J. Fluid Mech.
701
,
98
136
(
2012
).
12.
A.
Karlsson
and
F. C.
Fureby
, “
LES of the flow past a 6: 1 prolate spheroid
,” in
Proceedings of the 47th AIAA Aerospace Sciences Meeting
,
AIAA No. 2009-1616
(
AIAA
,
2009
), pp.
1
13
.
13.
N.
Wikström
,
U.
Svennberg
,
N.
Alin
, and
C.
Fureby
, “
Large eddy simulation of the flow around an inclined prolate spheroid
,”
J. Turbul.
5
,
37
41
(
2004
).
14.
G. S.
Constantinescu
,
H.
Pasinato
,
Y.-Q.
Wang
,
J. R.
Forsythe
, and
K. D.
Squires
, “
Numerical investigation of flow past a prolate spheroid
,”
Trans. ASME: J. Fluids Eng.
124
,
904
910
(
2002
).
15.
G. K.
El Khoury
,
H. I.
Andersson
, and
B.
Pettersen
, “
Crossflow past a prolate spheroid at Reynolds number of 10 000
,”
J. Fluid Mech.
659
,
365
374
(
2010
).
16.
P. H.
Mortensen
,
H. I.
Andersson
,
J. J. J.
Gillssen
, and
B. J.
Boersma
, “
Dynamics of prolate ellipsoidal particles in a turbulent channel flow
,”
Phys. Fluids
20
,
093302
(
2008
).
17.
H. I.
Andersson
,
L.
Zhao
, and
M.
Barri
, “
Torque-coupling and particle-turbulence interactions
,”
J. Fluid Mech.
696
,
319
329
(
2012
).
18.
L.
Zhao
,
C.
Marchioli
, and
H. I.
Andersson
, “
Slip velocity of rigid fibers in turbulent channel flow
,”
Phys. Fluids
26
,
063302
(
2014
).
19.
A.
Hölzer
and
M.
Sommerfeld
, “
New simple correlation formula for the drag coefficient of non-spherical particles
,”
Powder Technol.
184
,
361
365
(
2008
).
20.
A.
Hölzer
and
M.
Sommerfeld
, “
Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles
,”
Comput. Fluids
38
,
572
589
(
2009
).
21.
M.
Zastawny
,
G.
Mallouppas
,
F.
Zhao
, and
B.
Wachem
, “
Derivation of drag and lift force and torque coefficients for non-spherical particles in flows
,”
Int. J. Multiphase Flow.
39
,
227
239
(
2012
).
22.
M.
Manhart
,
F.
Tremblay
, and
R.
Friedrich
, “
MGLET: A parallel code for efficient DNS and LES of complex geometries
,” in
Parallel Computational Fluid Dynamics – Trends and Applications
(
Elsevier
,
Amsterdam,
2001
), pp.
449
456
.
23.
M.
Manhart
, “
A zonal grid algorithm for DNS of turbulent boundary layers
,”
Comput. Fluids
33
,
435
461
(
2004
).
24.
J. H.
Williamson
, “
Low-storage Runge-Kutta schemes
,”
J. Comput. Phys.
35
,
48
56
(
1980
).
25.
H. L.
Stone
, “
Iterative solution of implicit approximations of multidimensional partial differential equations
,”
SIAM J. Num. Anal.
5
,
530
558
(
1968
).
26.
N.
Peller
,
A. L.
Duc
,
F.
Tremblay
, and
M.
Manhart
, “
High-order stable interpolations for immersed boundary methods
,”
Int. J. Num. Meth. Fl.
52
,
1175
1193
(
2006
).
27.
N.
Peller
, “
Numerische Simulation turbulenter Strömungen mit Immersed Boundaries
,” Dr.-Ing. thesis,
Technische Universität München
,
2010
.
28.
J. P.
Gallardo
,
H. I.
Andersson
, and
B.
Pettersen
, “
Turbulent wake behind a curved circular cylinder
,”
J. Fluid Mech.
742
,
192
229
(
2014
).
29.
T. A.
Johnson
and
V. C.
Patel
, “
Flow past a sphere up to a Reynolds number of 300
,”
J. Fluid Mech.
378
,
19
70
(
1999
).
30.
M.
Zhao
,
L.
Cheng
, and
T.
Zhou
, “
Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length
,”
J. Fluids Struct.
25
,
831
847
(
2009
).
31.
S. L.
Clainche
,
F.
Gomes
,
J. I.
Li
,
V.
Theofilis
, and
J.
Soria
, “
Structural analysis on a hemisphere-cylinder at moderate Reynolds number and high angle of attack
,” AIAA Paper No. 2013–0387,
2013
.
32.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
33.
S. I.
Green
, “
Introduction to vorticity
,” in
Fluid Vortices
(
Kluwer Academic Publishers
,
1995
).
34.
J.
Hoerner
,
Fluid-Dynamics Drag
(
Hoerner Fluid Dynamics
,
1965
).
You do not currently have access to this content.