The near-contact-line dynamics of evaporating sessile drops containing live E. coli cells is studied experimentally. The evaporation of the drop together with its pinned contact-line drives a radially outward fluid flow inside the drop concentrating the suspended cells near the contact-line. Our experiments reveal a collective behavior of the concentrated bacterial population near the contact-line appearing in the form of spatially periodic “bacterial jets” along the circumference of the drop. Based on a physical analysis of the continuum equations of bacterial suspensions, we hypothesize that the patterns result from a concentration instability driven by the active stress of swimming bacteria.

1.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Capillary flow as the cause of ring stains from dried liquid drops
,”
Nature (London)
389
,
827
829
(
1997
).
2.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Contact line deposits in an evaporating drop
,”
Phys. Rev. E
62
,
756
765
(
2000
).
3.
H.
Hu
and
R. G.
Larson
, “
Analysis of the microfluid flow in an evaporating sessile droplet
,”
Langmuir
21
,
3963
3971
(
2005
).
4.
D. L.
Koch
and
G.
Subramanian
, “
Collective hydrodynamics of swimming microorganisms: Living fluids
,”
Annu. Rev. Fluid Mech.
43
,
637
659
(
2011
).
5.
X. L.
Wu
and
A.
Libchaber
, “
Particle diffusion in a quasi-two-dimensional bacterial bath
,”
Phys. Rev. Lett.
84
,
3017
3020
(
2000
).
6.
M. J.
Kim
and
K. S.
Breuer
, “
Enhanced diffusion due to motile bacteria
,”
Phys. Fluids
16
,
L78
L81
(
2004
).
7.
I.
Tuval
,
L.
Cisneros
,
C.
Dombrowski
,
C. W.
Wolgemuth
,
J. O.
Kessler
, and
R. E.
Goldstein
, “
Bacterial swimming and oxygen transport near contact lines
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
2277
2282
(
2005
).
8.
A.
Sokolov
,
R. E.
Goldstein
,
F. I.
Feldchtein
, and
I. S.
Aranson
, “
Enhanced mixing and spatial instability in concentrated bacterial suspensions
,”
Phys. Rev. E
80
,
031903
(
2009
).
9.
M. A.
Bees
,
P.
Andresn
,
E.
Mosekilde
, and
M.
Givskov
, “
The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens
,”
J. Math. Biol.
40
,
27
63
(
2000
).
10.
J.-F.
Joanny
and
S.
Ramaswamy
, “
A drop of active matter
,”
J. Fluid Mech.
705
,
46
57
(
2012
).
11.
S.
Hou
,
E. A.
Burton
,
K. A.
Simon
,
D.
Blodgett
,
Y.-Y.
Luk
, and
D.
Ren
, “
Inhibition of Escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold
,”
Appl. Environ. Microbiol.
73
,
4300
4307
(
2007
).
12.
H. C.
Berg
,
E. coli in Motion
(
Springer Verlag
,
2003
).
13.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
14.
J. P.
Hernandez-Ortiz
,
C. G.
Stoltz
, and
M. D.
Graham
, “
Transport and collective dynamics in suspensions of confined swimming particles
,”
Phys. Rev. Lett.
95
,
204501
(
2005
).
15.
D.
Saintillan
and
M. J.
Shelley
, “
Orientational order and instabilities in suspensions of self-locomoting rods
,”
Phys. Rev. Lett.
99
,
058102
(
2007
).
16.
P. T.
Underhill
,
J. P.
Hernandez-Ortiz
, and
M. D.
Graham
, “
Diffusion and spatial correlations in suspensions of swimming particles
,”
Phys. Rev. Lett.
100
,
248101
(
2008
).
17.
N. H.
Mendelson
,
A.
Bourque
,
K.
Wilkening
,
K. R.
Anderson
, and
J. C.
Watkins
, “
Organized cell swimming motions in Bacillus subtilis colonies: Patterns of short-lived whirls and jets
,”
J. Bacteriol.
181
,
600
609
(
1999
).
18.
C.
Dombrowski
,
L.
Cisneros
,
S.
Chatkaew
,
R. E.
Goldstein
, and
J. O.
Kessler
, “
Self-concentration and large-scale coherence in bacterial dynamics
,”
Phys. Rev. Lett.
93
,
098103
(
2004
).
19.
A.
Sokolov
,
I. S.
Aranson
,
J. O.
Kessler
, and
R. E.
Goldstein
, “
Concentration dependence of the collective dynamics of swimming bacteria
,”
Phys. Rev. Lett.
98
,
158102
(
2007
).
20.
T.
Ishikawa
,
N.
Yoshida
,
H.
Ueno
,
M.
Wiedeman
,
Y.
Imai
, and
T.
Yamaguchi
, “
Energy transport in a concentrated suspension of bacteria
,”
Phys. Rev. Lett.
107
,
028102
(
2011
).
21.
J.
Dunkel
,
S.
Heidenreich
,
K.
Drescher
,
H. H.
Wensink
,
M.
Bär
, and
R. E.
Goldstein
, “
Fluid dynamics of bacterial turbulence
,”
Phys. Rev. Lett.
110
,
228102
(
2013
).
22.
G.
Subramanian
and
D. L.
Koch
, “
Critical bacterial concentration for the onset of collective swimming
,”
J. Fluid Mech.
632
,
359
400
(
2009
).
23.
R. A.
Simha
and
S.
Ramaswamy
, “
Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles
,”
Phys. Rev. Lett.
89
,
058101
(
2002
).
24.
D.
Saintillan
and
M. J.
Shelley
, “
Instabilities and pattern formation in active particle suspensions: Kinetic theory and continuum simulations
,”
Phys. Rev. Lett.
100
,
178103
(
2008
).
25.
D.
Saintillan
and
M. J.
Shelley
, “
Instabilities, pattern formation, and mixing in active suspensions
,”
Phys. Fluids
20
,
123304
(
2008
).
26.
C.
Hohenegger
and
M. J.
Shelley
, “
Stability of active suspensions
,”
Phys. Rev. E
81
,
046311
(
2010
).
27.
B.
Ezhilan
,
A. A.
Pahlavan
, and
D.
Saintillan
, “
Chaotic dynamics and oxygen transport in thin films of aerotactic bacteria
,”
Phys. Fluids
24
,
091701
(
2012
).
28.
T. V.
Kasyap
and
D. L.
Koch
, “
Chemotaxis driven instability of a confined bacterial suspension
,”
Phys. Rev. Lett.
108
,
038101
(
2012
).
29.
T. V.
Kasyap
and
D. L.
Koch
, “
Instability of an inhomogeneous bacterial suspension subjected to a chemo-attractant gradient
,”
J. Fluid Mech.
741
,
619
657
(
2014
).
30.
See supplementary material at http://dx.doi.org/10.1063/1.4901958 for details on the preparation of bacterial suspensions, movies of the contact-line region of evaporating sessile drops containing wild-type (supplementary movie 1), smooth-swimming (supplementary movie 2), and incessantly tumbling E. coli cells (supplementary movie 3), and the movie of the contact-line region of non-evaporating drop containing wildtype E. coli cells (supplementary movie 4).
31.
H.
Hu
and
R. G.
Larson
, “
Evaporation of a sessile droplet on a substrate
,”
J. Phys. Chem. B
106
,
1334
1344
(
2002
).
32.
A.
Be'er
and
R. M.
Harshey
, “
Collective motion of surfactant-producing bacteria imparts superdiffusivity to their upper surface
,”
Biophys. J.
101
,
1017
1024
(
2011
).

Supplementary Material

You do not currently have access to this content.