Wings with tubercles have been shown to display advantageous loading behavior at high attack angles compared to their unmodified counterparts. In an earlier study by the authors, it was shown that an undulating leading-edge configuration, including but not limited to a tubercled model, induces a cyclic variation in circulation along the span that gives rise to the formation of counter-rotating streamwise vortices. While the aerodynamic benefits of full-span tubercled wings have been associated with the presence of such vortices, their formation mechanism and influence on wing performance are still in question. In the present work, experimental and numerical tests were conducted to further investigate the effect of tubercles on the flow structure over full-span modified wings based on the NACA 0021 profile, in the transitional flow regime. It is found that a skew-induced mechanism accounts for the formation of streamwise vortices whose development is accompanied by flow separation in delta-shaped regions near the trailing edge. The presence of vortices is detrimental to the performance of full-span wings pre-stall, however renders benefits post-stall as demonstrated by wind tunnel pressure measurement tests. Finally, primary and secondary vortices are identified post-stall that produce an enhanced momentum transfer effect that reduces flow separation, thus increasing the generated amount of lift.

1.
F. E.
Fish
and
J. M.
Battle
, “
Hydrodynamic design of the humpback whale flipper
,”
J. Morphol.
225
,
51
60
(
1995
).
2.
B. L.
Woodward
,
J. P.
Winn
, and
F. E.
Fish
, “
Morphological specializations of baleen whales associated with hydrodynamic performance and ecological niche
,”
J. Morphol.
267
,
1284
1294
(
2006
).
3.
P.
Watts
and
P. E.
Fish
, “
The influence of passive leading edge tubercles on wing performance
,” in
Proceedings of the Twelfth International Symposium on Unmanned Untethered Submersible Technology (UUST)
(
Autonomous Undersea Systems Institute
,
Durham NH
,
2001
).
4.
D. S.
Miklosovic
,
M. M.
Murray
,
L. E.
Howle
, and
F. E.
Fish
, “
Leading edge tubercles delay stall on humpback whale flippers
,”
Phys. Fluids
,
16
(
5
)
L39
L42
(
2004
).
5.
K. L.
Hansen
,
R. M.
Kelso
, and
B. B.
Dally
, “
Performance variations of leading-edge tubercles for distinct airfoil profiles
,”
AIAA J. Aircr.
49
,
185
194
(
2011
).
6.
H.
Johari
,
C.
Henoch
,
D.
Custodio
, and
A.
Levshin
, “
Effects of leading edge protuberances on airfoil performance
,”
AIAA J.
45
,
2634
2642
(
2007
).
7.
D. S.
Miklosovic
,
M. M.
Murray
, and
L.
Howle
, “
Experimental evaluation of sinusoidal leading edges
,”
J. Aircr.
44
,
1404
1407
(
2007
).
8.
H. T. C.
Pedro
and
M. H.
Kobayashi
, “
Numerical study of stall delay on humpback whale flippers
,” AIAA Paper No. 2008-0584,
2008
.
9.
E.
van Nierop
,
S.
Alben
, and
M. P.
Brenner
, “
How bumps on whale flippers delay stall: An aerodynamic model
,”
Phys. Rev. Lett.
100
,
054502
(
2008
).
10.
Applied Hydro- and Aeromechanics
, edited by
L.
Prandtl
and
O. G.
Tietjense
(
Dover Publications, Inc.
,
New York
,
1957
).
11.
N.
Rostamzadeh
,
R. M.
Kelso
,
B. B.
Dally
, and
K. L.
Hansen
, “
The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics
,”
Phys. Fluids
25
,
117101
(
2013
).
12.
J.
Anderson
,
Fundamentals of Aerodynamics
, 4th ed. (
McGraw-Hill International Higher Education
,
2005
).
13.
R.
Langtry
and
F.
Menter
, “
Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes
,”
AIAA J.
47
,
2894
2906
(
2009
).
14.
J. B.
Barlow
,
A.
Pope
, and
W. H.
Rae
,
Low Speed Wind Tunnel Testing
, 3rd ed. (
Wiley-Interscience
,
1999
).
15.
K. L.
Hansen
, “
Effect of leading edge tubercles on airfoil performance
,” in
Doctor of Philosophy, Mechanical Engineering
(
University of Adelaide
,
Adelaide
,
2012
).
16.
P.
Weber
,
L.
Howle
,
M.
Murray
, and
D.
Miklosovic
, “
Computational evaluation of the performance of lifting surfaces with leading-edge protuberances
,”
J. Aircr.
48
,
591
600
(
2011
).
17.
S. F.
Hoerner
, “
Fluid dynamic lift: Practical information on aerodynamic and hydrodynamic lift
,”
NASA STI
/Recon Tech. Rep. A 76, 32167 (
1975
).
18.
J. G.
Leishman
,
Principles of Helicopter Aerodynamics
(
Cambridge Aerospace Series
,
England, UK
,
2006
), Chapter 7.
19.
ANSYS
, “
ANSYS-CFX Solver Theory Guide
,” in
ANSYS CFX 12.1
, edited (
ANSYS, Inc.
,
Pennsylvania
,
2011
).
20.
X.
Zheng
,
C.
Liu
,
F.
Liu
, and
C.-L.
Yang
, “
Turbulent transition simulation using the k-ω model
,”
Int. J. Numer. Methods Eng.
42
,
907
926
, (
1998
).
21.
J. N. N.
Counsil
and
K. G.
Boulama
, “
Validating the URANS shear stress transport γ −Reθ model for low-Reynolds-number external aerodynamics
,”
Int. J. Numer. Methods Fluids
69
,
1411
1432
(
2012
).
22.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAAA J.
32
,
1598
1605
(
1994
).
23.
P. J.
Roache
,
Verification and Validation in Computational Science and Engineering
(
Hermosa
,
New Mexico
,
1998
).
24.
J. N. N.
Counsil
and
K. G.
Boulama
, “
Low-Reynolds-number aerodynamic performances of the NACA 0012 and Selig–Donovan 7003 airfoils
,”
J. Aircr.
50
,
204
216
(
2013
).
25.
P.
Bradshaw
, “
Turbulent secondary flows
,”
Annu. Rev. Fluid Mech.
19
,
53
74
(
1987
).
26.
H. J.
Perkins
, “
The formation of streamwise vorticity in turbulent flow
,”
J. Fluid Mech.
44
,
721
740
(
1970
).
27.
N.
Karthikeyan
,
S.
Sudhakar
, and
P.
Suriyanarayanan
, “
Experimental studies on the effect of leading edge tubercles on laminar separation bubble
,” in
52nd Aerospace Sciences Meeting
, edited (
American Institute of Aeronautics and Astronautics
,
2014
).
28.
J.
Delery
,
Three Dimensional Separated Flow Topology
(
Wiley
,
2013
).
29.
A. D.
Cutler
and
P.
Bradshaw
, “
Strong vortex/boundary layer interactions
,”
Exp. Fluids
14
,
393
401
(
1993
).
You do not currently have access to this content.