Through theory supported by numerical simulations, we examine the induced local and long range response flows resulting from the momentum flux divergence associated with with a two-dimensional Boussinesq internal gravity wavepacket in a uniformly stratified ambient. Our theoretical approach performs a perturbation analysis that takes advantage of the separation of scales between waves and the amplitude envelope of a quasi-monochromatic wavepacket. We first illustrate our approach by applying it to the well-studied case of deep water surface gravity waves, showing that the induced flow, UDF, resulting from the divergence of the horizontal momentum flux is equal to the Stokes drift. For a localized surface wavepacket, UDF is itself a divergent flow and so there is the well-known non-local response manifest in the form of a deep return flow beneath the wavepacket. For horizontally periodic and vertically localized internal wavepackets, the divergent-flux induced flow, uDF, is found from consideration of the vertical gradient of the vertical flux of horizontal momentum associated with the waves. Because uDF is itself a non-divergent flow field, this accounts entirely for the wave-induced flow; there is no response flow. Our focus is upon internal wavepackets that are localized in the horizontal and vertical. We derive a formula for the divergent-flux induced flow that, as in this case of surface wavepackets, is itself a divergent flow. We show that the response is a horizontally long internal wave that translates vertically with the wavepacket at its group velocity. Scaling relationships are used to estimate the wavenumber, horizontal extent, and amplitude of this induced long wave. At higher order in perturbation theory we derive an explicit integral formula for the induced long wave. Thus, we provide validation of Bretherton's analysis of flows induced by two-dimensional internal wavepackets [F. P. Bretherton, “On the mean motion induced by gravity waves,” J. Fluid Mech. 36, 785–803 (1969)] and we provide further analyses that give intuitive insights into the physics governing the properties of the induced long wave. In particular, consistent with momentum conservation, we show that the horizontally-integrated horizontal flow associated with the long wave is given exactly by the horizontal integral of uDF. However, qualitatively different from horizontally periodic internal waves, the vertical profile of the induced horizontal flow across the horizontally localized wavepacket is positive at the leading edge and negative at the trailing edge. These results are validated by the results of numerical simulations of a Gaussian wavepacket initialized in an otherwise stationary ambient.
Skip Nav Destination
CHORUS
Article navigation
October 2014
Research Article|
October 28 2014
The mean flow and long waves induced by two-dimensional internal gravity wavepackets
T. S. van den Bremer;
T. S. van den Bremer
a)
1Department of Engineering Science,
University of Oxford
, Parks Road, Oxford OX1 3PJ, United Kingdom
Search for other works by this author on:
B. R. Sutherland
B. R. Sutherland
b)
2Department of Physics,
University of Alberta
, Edmonton, Alberta T6G 2E1, Canada
3Department of Earth and Atmospheric Sciences,
University of Alberta
, Edmonton, Alberta T6G 2E3, Canada
Search for other works by this author on:
Physics of Fluids 26, 106601 (2014)
Article history
Received:
July 30 2014
Accepted:
October 13 2014
Citation
T. S. van den Bremer, B. R. Sutherland; The mean flow and long waves induced by two-dimensional internal gravity wavepackets. Physics of Fluids 1 October 2014; 26 (10): 106601. https://doi.org/10.1063/1.4899262
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
On Oreology, the fracture and flow of “milk's favorite cookie®”
Crystal E. Owens, Max R. Fan (范瑞), et al.
Fluid–structure interaction on vibrating square prisms considering interference effects
Zengshun Chen (陈增顺), 陈增顺, et al.
A unified theory for bubble dynamics
A-Man Zhang (张阿漫), 张阿漫, et al.
Related Content
Rotation-induced nonlinear wavepackets in internal waves
Physics of Fluids (May 2014)
Beyond ray tracing for internal waves. II. Finite-amplitude effects
Physics of Fluids (October 2008)
Anelastic internal wave reflection and transmission in uniform retrograde shear
Physics of Fluids (February 2014)
Viscous spreading of an inertial wave beam in a rotating fluid
Physics of Fluids (August 2010)
The axisymmetric collapse of a mixed patch and internal wave generation in uniformly stratified rotating fluid
Physics of Fluids (May 2015)