Two-point statistics are presented for a new direct simulation of the zero-pressure-gradient turbulent boundary layer in the range Reθ = 2780–6680, and compared with channels in the same range of Reynolds numbers, δ+ ≈ 1000–2000. Three-dimensional spatial correlations are investigated in very long domains to educe the average structure of the velocity and pressure fluctuations. The streamwise velocity component is found to be coherent over longer distances in channels than in boundary layers, especially in the direction of the flow. For weakly correlated structures, the maximum streamwise length is |$\cal{O}(7\delta )$|O(7δ) for boundary layers and |$\cal{O}(18\delta )$|O(18δ) for channels, attained at the logarithmic and outer regions, respectively. The corresponding lengths for the spanwise and wall-normal velocities and for the pressure are shorter, |$\cal{O}(\delta$|O(δ-2δ). The correlations are shown to be inclined to the wall at angles that depend on the distance from the wall, on the variable being considered, and on the correlation level used to define them. All these features change little between the two types of flows. Most the above features are also approximately independent of the Reynolds number, except for the pressure, and for the streamwise velocity structures in the channel. Further insight into the flow is provided by correlations conditioned on the intensity of the perturbations at the reference point, or on their sign. The statistics of the new simulation are available in our website.

1.
A. A.
Townsend
, “
The turbulent boundary layer
,” in
Boundary Layer Research
,
International Union of Theoretical and Applied Mechanics
, edited by
H.
Görtler
(
Springer
,
Berlin
,
1958
), pp.
1
15
.
2.
H. L.
Grant
, “
The large eddies of turbulent motion
,”
J. Fluid Mech.
4
,
149
190
(
1958
).
3.
A. J.
Favre
,
J. J.
Gaviglio
, and
R.
Dumas
, “
Space-time double correlations and spectra in a turbulent boundary layer
,”
J. Fluid Mech.
2
,
313
342
(
1957
).
4.
S. J.
Kline
,
W. C.
Reynolds
,
F. A.
Schraub
, and
P. W.
Runstadler
, “
The structure of turbulent boundary layers
,”
J. Fluid Mech.
30
,
741
773
(
1967
).
5.
A.
Lozano-Durán
,
O.
Flores
, and
J.
Jiménez
, “
The three-dimensional structure of momentum transfer in turbulent channels
,”
J. Fluid Mech.
694
,
100
130
(
2012
).
6.
L. S. G.
Kovasznay
,
V.
Kibens
, and
R. R.
Blackwelder
, “
Large-scale motion in the intermittent region of a turbulent boundary layer
,”
J. Fluid Mech.
41
,
283
325
(
1970
).
7.
J.
Murlis
,
H. M.
Tsai
, and
P.
Bradshaw
, “
The structure of turbulent boundary layers at low Reynolds numbers
,”
J. Fluid Mech.
122
,
13
56
(
1982
).
8.
H. P.
Bakewell
and
J. L.
Lumley
, “
Viscous sublayer and adjacent wall region in turbulent pipe flow
,”
Phys. Fluids
10
,
1880
1889
(
1967
).
9.
E. R.
Corino
and
R. S.
Brodkey
, “
A visual investigation of the wall region in turbulent flow
,”
J. Fluid Mech.
37
,
1
30
(
1969
).
10.
J.
Jiménez
, “
Near-wall turbulence
,”
Phys. Fluids
25
,
101302
(
2013
).
11.
J.
Jiménez
, “
The largest scales of turbulence
,” in
CTR Ann. Res. Briefs
(
Stanford University
,
1998
), pp.
137
154
.
12.
K.
Kim
and
R. J.
Adrian
, “
Very large-scale motion in the outer layer
,”
Phys. Fluids
11
,
417
422
(
1999
).
13.
S. K.
Robinson
, “
Coherent motions in the turbulent boundary layer
,”
Annu. Rev. Fluid Mech.
23
,
601
639
(
1991
).
14.
A. A.
Townsend
,
The Structure of Turbulent Shear Flows
, 2nd ed. (
Cambridge University Press
,
1976
).
15.
A. E.
Perry
,
S.
Henbest
, and
M. S.
Chong
, “
A theoretical and experimental study of wall turbulence
,”
J. Fluid Mech.
119
,
163
199
(
1986
).
16.
C. D.
Tomkins
and
R. J.
Adrian
, “
Spanwise structure and scale growth in turbulent boundary layers
,”
J. Fluid Mech.
490
,
37
74
(
2003
).
17.
J. C.
del Álamo
,
J.
Jiménez
,
P.
Zandonade
, and
R. D.
Moser
, “
Self-similar vortex clusters in the turbulent logarithmic region
,”
J. Fluid Mech.
561
,
329
358
(
2006
).
18.
J. A.
Sillero
,
J.
Jiménez
, and
R. D.
Moser
, “
One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+ ≈ 2000
,”
Phys. Fluids
25
,
105102
(
2013
).
19.
J. C.
del Álamo
,
J.
Jiménez
,
P.
Zandonade
, and
R. D.
Moser
, “
Scaling of the energy spectra of turbulent channels
,”
J. Fluid Mech.
500
,
135
144
(
2004
).
20.
S.
Hoyas
and
J.
Jiménez
, “
Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
21.
J.
Jiménez
,
S.
Hoyas
,
M. P.
Simens
, and
Y.
Mizuno
, “
Turbulent boundary layers and channels at moderate Reynolds numbers
,”
J. Fluid Mech.
657
,
335
360
(
2010
).
22.
J.
Jiménez
and
S.
Hoyas
, “
Turbulent fluctuations above the buffer layer of wall-bounded flows
,”
J. Fluid Mech.
611
,
215
236
(
2008
).
23.
D. J.
Tritton
, “
Some new correlation measurements in a turbulent boundary layer
,”
J. Fluid Mech.
28
,
439
462
(
1967
).
24.
G.
Comte-Bellot
, “
Écoulement turbulent entre deux parois parellèles
,” Pub. Scientifiques Techniques (Ministère de L’Air,
1965
), Vol.
419
.
25.
A. A.
Townsend
, “
Equilibrium layers and wall turbulence
,”
J. Fluid Mech.
11
,
97
120
(
1961
).
26.
B.
Ganapathisubramani
,
N.
Hutchins
,
W. T.
Hambleton
,
E. K.
Longmire
, and
I.
Marusic
, “
Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations
,”
J. Fluid Mech.
524
,
57
80
(
2005
).
27.
J. H.
Lee
and
H. J.
Sung
, “
Very-large-scale motions in a turbulent boundary layer
,”
J. Fluid Mech.
673
,
80
120
(
2011
).
28.
S.
Pirozzoli
and
M.
Bernardini
, “
Turbulence in supersonic boundary layers at moderate Reynolds number
,”
J. Fluid Mech.
688
,
120
168
(
2011
).
29.
N.
Hutchins
and
I.
Marusic
, “
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers
,”
J. Fluid Mech.
579
,
467
477
(
2007
).
30.
K. J.
Bullock
,
R. E.
Cooper
, and
F. H.
Abernathy
, “
Structural similarity in radial correlations and spectra of longitudinal velocity fluctuations in pipe flow
,”
J. Fluid Mech.
88
,
585
608
(
1978
).
31.
K. T.
Christensen
, “
Experimental investigation of acceleration and velocity fields in turbulent channel flow
,” Ph.D. thesis,
University of Illinois at Urbana-Champaign
,
2001
.
32.
J. H.
Lee
and
H. J.
Sung
, “
Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations
,”
Phys. Fluids
25
,
045103
(
2013
).
33.
P.
Moin
and
J.
Kim
, “
Numerical investigation of turbulent channel flow
,”
J. Fluid Mech.
118
,
341
377
(
1982
).
34.
J. W.
Deardorff
, “
A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers
,”
J. Fluid Mech.
41
,
453
480
(
1970
).
35.
P.
Moin
and
J.
Kim
, “
The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations
,”
J. Fluid Mech.
155
,
441
464
(
1985
).
36.
H.
Tennekes
and
L. J.
Lumley
,
First Course in turbulence
(
MIT Pres
,
1972
).
37.
R. J.
Adrian
,
C. D.
Meinhart
, and
C. D.
Tomkins
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
53
(
2000
).
38.
M. R.
Head
and
P.
Bandyopadhyay
, “
New aspects of turbulent boundary-layer structure
,”
J. Fluid Mech.
107
,
297
338
(
1981
).
39.
T.
Theodorsen
, “
Mechanism of turbulence
,” in
Proceedings of the Second Midwestern Conference on Fluid Mechanics, Columbus, Ohio, 17–19 March 1952
(
The Ohio State University
,
1952
), pp.
1
19
.
40.
J. C.
del Álamo
and
J.
Jiménez
, “
Spectra of the very large anisotropic scales in turbulent channels
,”
Phys. Fluids
15
,
L41
L44
(
2003
).
41.
J.
Jiménez
, “
Cascades in wall-bounded turbulence
,”
Annu. Rev. Fluid Mech.
44
,
27
45
(
2012
).
42.
Z.
Liu
,
R. J.
Adrian
, and
T. J.
Hanratty
, “
Large-scale modes of turbulent channel flow: Transport and structure
,”
J. Fluid Mech.
448
,
53
80
(
2001
).
43.
Y.
Wu
and
K. T.
Christensen
, “
Spatial structure of a turbulent boundary layer with irregular surface roughness
,”
J. Fluid Mech.
655
,
380
418
(
2010
).
44.
M.
Guala
,
S. E.
Hommema
, and
R. J.
Adrian
, “
Large-scale and very-large-scale motions in turbulent pipe flow
,”
J. Fluid Mech.
554
,
521
542
(
2006
).
45.
J. P.
Monty
,
J. A.
Stewart
,
R. C.
Williams
, and
M. S.
Chong
, “
Large-scale features in turbulent pipe and channel flows
,”
J. Fluid Mech.
589
,
147
156
(
2007
).
46.
M.
Tutkun
,
W. K.
George
,
J.
Delville
,
M.
Stanislas
,
P. B. V.
Johansson
,
J.-M.
Foucaut
, and
S.
Coudert
, “
Two-point correlations in high Reynolds number flat plate turbulent boundary layers
,”
J. Turbul.
10
,
21
(
2009
).
47.
S. C. C.
Bailey
and
A. J.
Smits
, “
Experimental investigation of the structure of large- and very-large-scale motions in turbulent pipe flow
,”
J. Fluid Mech.
651
,
339
356
(
2010
).
48.
D. J. C.
Dennis
and
T. B.
Nickels
, “
Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures
,”
J. Fluid Mech.
673
,
218
244
(
2011
).
49.
J.
Kim
,
P.
Moin
, and
R. D.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
50.
J. H.
Lee
,
J.
Lee
, and
H. J.
Sung
, “
Spatial features of the wall-normal structures in a turbulent boundary layer
,”
J. Turbul.
12
,
N46
(
2011
).
51.
J. R.
Baltzer
,
R. J.
Adrian
, and
X.
Wu
, “
Structural organization of large and very large scales in turbulent pipe flow simulation
,”
J. Fluid Mech.
720
,
236
279
(
2013
).
52.
P.
Moin
and
R. D.
Moser
, “
Characteristic–Eddy decomposition of turbulence in a channel
,”
J. Fluid Mech.
200
,
471
509
(
1989
).
53.
M.
Tanahashi
,
S.-J.
Kang
,
T.
Miyamoto
,
S.
Shiokawa
, and
T.
Miyauchi
, “
Scaling law of fine scale eddies in turbulent channel flow at to Reτ = 800
,”
Int. J. Heat Fluid Flow
25
,
331
340
(
2004
).
54.
T. M.
Farabee
and
M. J.
Casarella
, “
Spectral features of wall pressure fluctuations beneath turbulent boundary layers
,”
Phys. Fluids A
3
,
2410
2420
(
1991
).
55.
H.
Choi
and
P.
Moin
, “
On the space-time characteristics of wall-pressure fluctuations
,”
Phys. Fluids A
2
,
1450
1460
(
1990
).
56.
Z.
Hu
,
C.
Morley
, and
N.
Sandham
, “
Wall pressure and shear stress spectra from direct simulations of channel flow
,”
AIAA J.
44
,
1541
1549
(
2006
).
57.
Y.
Tsuji
,
J. H. M.
Fransson
,
P. H.
Alfredsson
, and
A. V.
Johansson
, “
Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers
,”
J. Fluid Mech.
585
,
1
40
(
2007
).
58.
J.
Kim
, “
On the structure of pressure fluctuations in simulated turbulent channel flow
,”
J. Fluid Mech.
205
,
421
451
(
1989
).
59.
V. J.
Shinde
,
J.-P.
Laval
, and
M.
Stanislas
, “
Effect of mean pressure gradient on the turbulent wall pressure–velocity correlations
,”
J. Turbul.
15
,
833
856
(
2014
).
60.
J.
Kim
and
P.
Moin
, “
Application of a fractional-step method to incompressible Navier-Stokes equations
,”
J. Comput. Phys.
59
,
308
323
(
1985
).
61.
S.
Nagarajan
,
S. K.
Lele
, and
J. H.
Ferziger
, “
A robust high-order compact method for large eddy simulation
,”
J. Comput. Phys.
191
,
392
419
(
2003
).
62.
M. P.
Simens
,
J.
Jiménez
,
S.
Hoyas
, and
Y.
Mizuno
, “
A high-resolution code for turbulent boundary layers
,”
J. Comput. Phys.
228
,
4218
4231
(
2009
).
63.
G.
Borrell
,
J.
Sillero
, and
J.
Jiménez
, “
A code for direct numerical simulation of turbulent boundary layers at high Reynolds numbers in BG/P supercomputers
,”
Comput. Fluid.
80
,
37
43
(
2013
).
64.
P. R.
Spalart
,
R. D.
Moser
, and
M. M.
Rogers
, “
Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions
,”
J. Comput. Phys.
96
,
297
324
(
1991
).
65.
D. J. C.
Dennis
and
T. B.
Nickels
, “
Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets
,”
J. Fluid Mech.
673
,
180
217
(
2011
).
66.
D. R.
Cox
and
P. A. W.
Lewis
,
The Statistical Analysis of Series of Events
(
Methuen & Co.
,
1966
).
67.
A.
Lozano-Durán
and
J.
Jiménez
, “
Effect of the computational domain on direct simulations of turbulent channels up to Reτ = 4200
,”
Phys. Fluids
26
,
011702
(
2014
).
68.
J. P.
Monty
,
N.
Hutchins
,
H. C. H.
Ng
,
I.
Marusic
, and
M. S.
Chong
, “
A comparison of turbulent pipe, channel and boundary layer flows
,”
J. Fluid Mech.
632
,
431
442
(
2009
).
69.
S.
Hoyas
and
J.
Jiménez
, “
Reynolds number effects on the Reynolds-stress budgets in turbulent channels
,”
Phys. Fluids
20
,
101511
(
2008
).
70.
P.
Bradshaw
, “
Inactive motions and pressure fluctuations in turbulent boundary layers
,”
J. Fluid Mech.
30
,
241
258
(
1967
).
71.
C. D.
Tomkins
and
R. J.
Adrian
, “
Energetic spanwise modes in the logarithmic layer of a turbulent boundary layer
,”
J. Fluid Mech.
545
,
141
162
(
2005
).
72.
C. R.
Smith
and
S. P.
Metzler
, “
The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer
,”
J. Fluid Mech.
129
,
27
54
(
1983
).
73.
D. B.
deGraaff
and
J. K.
Eaton
, “
Reynolds number scaling of the flat-plate turbulent boundary layer
,”
J. Fluid Mech.
422
,
319
346
(
2000
).
74.
M.
Hultmark
,
M.
Vallikivi
,
S. C. C.
Bailey
, and
A. J.
Smits
, “
Turbulent pipe flow at extreme Reynolds numbers
,”
Phys. Rev. Lett.
108
,
094501
(
2012
).
75.
I.
Marusic
,
J. P.
Monty
,
M.
Hultmark
, and
A. J.
Smits
, “
On the logarithmic region in wall turbulence
,”
J. Fluid Mech.
716
,
R3
(
2013
).
76.
F.
Harris
, “
On the use of windows for harmonic analysis with the discrete fourier transform
,”
Proc. IEEE
66
,
51
83
(
1978
).
77.
P. D.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short modified periodograms
,”
IEEE Trans. Audio Electroacoust.
AU-15
,
70
73
(
1967
).
78.
G. K.
Batchelor
,
The Theory of Homogeneous Turbulence
(
Cambridge University Press
,
1953
).
79.
P. L.
O’Neill
,
D.
Nicolaides
,
D.
Honnery
, and
J.
Soria
, “
Autocorrelation functions and the determination of integral length with reference to experimental and numerical data
,” in
Proceedings of the 15th Australasian Fluid Mechanics Conference: Sydney, Australia, 13-17 December
2004
, edited by
M.
Behnia
,
W.
Lin
, and
G. D.
McBain
(
The University of Sydney
,
2004
).
80.
T.
Wei
and
W. W.
Willmarth
, “
Reynolds-number effects on the structure of a turbulent channel flow
,”
J. Fluid Mech.
204
,
57
95
(
1989
).
81.
J.
Jiménez
, “
How linear is wall-bounded turbulence?
Phys. Fluids
25
,
110814
(
2013
).
82.
J.
Jiménez
,
J. C.
del Álamo
, and
O.
Flores
, “
The large-scale dynamics of near-wall turbulence
,”
J. Fluid Mech.
505
,
179
199
(
2004
).
83.
J.
Jiménez
and
G.
Kawahara
, “
Dynamics of wall-bounded turbulence
,”
Ten Chapters in Turbulence
(
Cambridge University Press
,
2013
).
84.
N. N.
Mansour
,
J.
Kim
, and
P.
Moin
, “
Reynolds-stress and dissipation-rate budgets in a turbulent channel flow
,”
J. Fluid Mech.
194
,
15
44
(
1988
).
85.
J. M.
Wallace
,
H.
Eckelmann
, and
R. S.
Brodkey
, “
The wall region in turbulent shear flow
,”
J. Fluid Mech.
54
,
39
48
(
1972
).
86.
W. W.
Willmarth
and
S. S.
Lu
, “
Structure of the Reynolds stress near the wall
,”
J. Fluid Mech.
55
,
65
92
(
1972
).
87.
R. A.
Antonia
,
M.
Teitel
,
J.
Kim
, and
L. W. B.
Browne
, “
Low-Reynolds-number effects in a fully developed turbulent channel flow
,”
J. Fluid Mech.
236
,
579
605
(
1992
).
88.
C. J.
Delo
,
R. M.
Kelso
, and
A. J.
Smits
, “
Three-dimensional structure of a low-Reynolds-number turbulent boundary layer
,”
J. Fluid. Mech.
512
,
47
83
(
2004
).
You do not currently have access to this content.