The hydrodynamic forces involved in the undulatory microswimming of the model organism C. elegans are studied in proximity to solid boundaries. Using a micropipette deflection technique, we attain direct and time-resolved force measurements of the viscous forces acting on the worm near a single planar boundary as well as confined between two planar boundaries. We observe a monotonic increase in the lateral and propulsive forces with increasing proximity to the solid interface. We determine normal and tangential drag coefficients for the worm, and find these to increase with confinement. The measured drag coefficients are compared to existing theoretical models. The ratio of normal to tangential drag coefficients is found to assume a constant value of 1.5 ± 0.1(5) at all distances from a single boundary, but increases significantly as the worm is confined between two boundaries. In response to the increased drag due to confinement, we observe a gait modulation of the nematode, which is primarily characterized by a decrease in the swimming amplitude.

1.
E. M.
Purcell
, “
Life at low Reynolds-number
,”
Am. J. Phys.
45
,
3
11
(
1977
).
2.
R. P.
McCord
,
J. N.
Yukich
, and
K. K.
Bernd
, “
Analysis of force generation during flagellar assembly through optical trapping of free-swimming Chlamydomonas reinhardtii
,”
Cell Motil. Cytoskel.
61
,
137
144
(
2005
).
3.
S.
Chattopadhyay
,
R.
Moldovan
,
C.
Yeung
, and
X. L.
Wu
, “
Swimming efficiency of bacterium Escherichia coli
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
13712
13717
(
2006
).
4.
Y. W.
Kim
and
R. R.
Netz
, “
Pumping fluids with periodically beating grafted elastic filaments
,”
Phys. Rev. Lett.
96
,
158101
(
2006
).
5.
M. J.
Kim
and
K. S.
Breuer
, “
Microfluidic pump powered by self-organizing bacteria
,”
Small
4
,
111
118
(
2008
).
6.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
7.
M. J.
Kim
and
K. S.
Breuer
, “
Enhanced diffusion due to motile bacteria
,”
Phys. Fluids
16
,
L78
L81
(
2004
).
8.
M. J.
Kim
and
K. S.
Breuer
, “
Controlled mixing in microfluidic systems using bacterial chemotaxis
,”
Anal. Chem.
79
,
955
959
(
2007
).
9.
N.
Darnton
,
L.
Turner
,
K.
Breuer
, and
H. C.
Berg
, “
Moving fluid with bacterial carpets
,”
Biophys. J.
86
,
1863
1870
(
2004
).
10.
D. B.
Weibel
,
P.
Garstecki
,
D.
Ryan
,
W. R.
Diluzio
,
M.
Mayer
,
J. E.
Seto
, and
G. M.
Whitesides
, “
Microoxen: Microorganisms to move microscale loads
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
11963
11967
(
2005
).
11.
G. L.
Cooper
,
A. L.
Schiller
, and
C. C.
Hopkins
, “
Possible role of capillary action in pathogenesis of experimental catheter-associated dermal tunnel infections
,”
J. Clin. Microbiol.
26
,
8
12
(
1988
).
12.
G.
Harkes
,
J.
Dankert
, and
J.
Feijen
, “
Bacterial migration along solid surfaces
,”
Appl. Environ. Microbiol.
58
,
1500
1505
(
1992
).
13.
S. S.
Suarez
and
A. A.
Pacey
, “
Sperm transport in the female reproductive tract
,”
Hum. Reprod. Update
12
,
23
37
(
2006
).
14.
J. W.
Costerton
,
Z.
Lewandowski
,
D. E.
Caldwell
,
D. R.
Korber
, and
H. M.
Lappin-Scott
, “
Microbial biofilms
,”
Annu. Rev. Microbiol.
49
,
711
745
(
1995
).
15.
M. C.
Van Loosdrecht
,
J.
Lyklema
,
W.
Norde
, and
A. J.
Zehnder
, “
Influence of interfaces on microbial activity
,”
Microbiol. Rev.
54
,
75
87
(
1990
).
16.
D. F.
Katz
,
T. D.
Bloom
, and
R. H.
Bondurant
, “
Movement of bull spermatozoa in cervical mucus
,”
Biol. Reprod.
25
,
931
937
(
1981
).
17.
E.
Lauga
,
W. R.
DiLuzio
,
G. M.
Whitesides
, and
H. A.
Stone
, “
Swimming in circles: Motion of bacteria near solid boundaries
,”
Biophys. J.
90
,
400
412
(
2006
).
18.
W. R.
DiLuzio
,
L.
Turner
,
M.
Mayer
,
P.
Garstecki
,
D. B.
Weibel
,
H. C.
Berg
, and
G. M.
Whitesides
, “
Escherichia coli swim on the right-hand side
,”
Nature (London)
435
,
1271
1274
(
2005
).
19.
U.
Ruffer
and
W.
Nultsch
, “
High-speed cinematographic analysis of the movement of Chlamydomonas
,”
Cell Motil.
5
,
251
263
(
1985
).
20.
M.
Polin
,
I.
Tuval
,
K.
Drescher
,
J. P.
Gollub
, and
R. E.
Goldstein
, “
Chlamydomonas swims with two “gears” in a eukaryotic version of run-and-tumble locomotion
,”
Science
325
,
487
490
(
2009
).
21.
M.
Silverman
and
M.
Simon
, “
Flagellar rotation and the mechanism of bacterial motility
,”
Nature (London)
249
,
73
74
(
1974
).
22.
J.
Lighthill
, “
Flagellar hydrodynamics – The John von Neumann Lecture, 1975
,”
SIAM Rev.
18
,
161
230
(
1976
).
23.
G.
Taylor
, “
Analysis of the swimming of microscopic organisms
,”
Proc. R. Soc. London A
209
,
447
461
(
1951
).
24.
J.
Gray
, “
Undulatory propulsion
,”
Q. J. Microsc. Sci.
94
,
551
578
(
1953
).
25.
J.
Gray
and
G. J.
Hancock
, “
The propulsion of sea-urchin spermatozoa
,”
J. Exp. Biol.
32
,
802
814
(
1955
).
26.
J.
Gray
and
H. W.
Lissmann
, “
The locomotion of nematodes
,”
J. Exp. Biol.
41
,
135
154
(
1964
).
27.
G.
Tokic
and
D. K. P.
Yue
, “
Optimal shape and motion of undulatory swimming organisms
,”
Proc. R. Soc. B
279
,
3065
3074
(
2012
).
28.
R. G.
Cox
, “
The motion of long slender bodies in a viscous fluid. Part 1. General theory
,”
J. Fluid Mech.
44
,
791
810
(
1970
).
29.
R. S.
Berman
,
O.
Kenneth
,
J.
Sznitman
, and
A. M.
Leshansky
, “
Undulatory locomotion of finite filaments: Lessons from Caenorhabditis elegans
,”
New J. Phys.
15
,
075022
(
2013
).
30.
D. F.
Katz
,
J. R.
Blake
, and
S. L.
Paveri-Fontana
, “
On the movement of slender bodies near plane boundaries at low Reynolds number
,”
J. Fluid Mech.
72
,
529
540
(
1975
).
31.
N. J.
De Mestre
, “
Low-Reynolds-number fall of slender cylinders near boundaries
,”
J. Fluid Mech.
58
,
641
656
(
1973
).
32.
R. D.
Schulman
,
M.
Backholm
,
W. S.
Ryu
, and
K.
Dalnoki-Veress
, “
Dynamic force patterns of an undulatory microswimmer
,”
Phys. Rev. E
89
,
050701
(
2014
).
33.
S.
Brenner
, “
The genetics of Caenorhabditis elegans
,”
Genetics
77
,
71
94
(
1974
).
34.
M.
Backholm
,
W. S.
Ryu
, and
K.
Dalnoki-Veress
, “
Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
4528
4533
(
2013
).
35.
C.
Fang-Yen
,
M.
Wyart
,
J.
Xie
,
R.
Kawai
,
T.
Kodger
,
S.
Chen
,
Q.
Wen
, and
A. D. T.
Samuel
, “
Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
20323
20328
(
2010
).
36.
J.
Sznitman
,
X.
Shen
,
R.
Sznitman
, and
P. E.
Arratia
, “
Propulsive force measurements and flow behavior of undulatory swimmers at low Reynolds number
,”
Phys. Fluids
22
,
121901
(
2010
).
37.
X. N.
Shen
,
J.
Sznitman
,
P.
Krajacic
,
T.
Lamitina
, and
P. E.
Arratia
, “
Undulatory locomotion of Caenorhabditis elegans on wet surfaces
,”
Biophys. J.
102
,
2772
2781
(
2012
).
38.
X. N.
Shen
and
P. E.
Arratia
, “
Undulatory swimming in viscoelastic fluids
,”
Phys. Rev. Lett.
106
,
208101
(
2011
).
39.
P.
Sauvage
,
M.
Argentina
,
J.
Drappier
,
T.
Senden
,
J.
Siméon
, and
J.-M.
Di Meglio
, “
An elasto-hydrodynamical model of friction for the locomotion of Caenorhabditis elegans
,”
J. Biomech.
44
,
1117
1122
(
2011
).
40.
S.
Park
,
H.
Hwang
,
S.-W.
Nam
,
F.
Martinez
,
R. H.
Austin
, and
W. S.
Ryu
, “
Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment
,”
PLoS One
3
,
e2550
(
2008
).
41.
T.
Majmudar
,
E. E.
Keaveny
,
J.
Zhang
, and
M. J.
Shelley
, “
Experiments and theory of undulatory locomotion in a simple structured medium
,”
J. R. Soc. Interface
9
,
1809
1823
(
2012
).
42.
G.
Juarez
,
K.
Lu
,
J.
Sznitman
, and
P. E.
Arratia
, “
Motility of small nematodes in wet granular media
,”
Europhys. Lett.
92
,
44002
(
2010
).
43.
S.
Jung
, “
Caenorhabditis elegans swimming in a saturated particulate system
,”
Phys. Fluids
22
,
031903
(
2010
).
44.
F.
Lebois
,
P.
Sauvage
,
C.
Py
,
O.
Cardoso
,
B.
Ladoux
,
P.
Hersen
, and
J.-M.
Di Meglio
, “
Locomotion control of Caenorhabditis elegans through confinement
,”
Biophys. J.
102
,
2791
2798
(
2012
).
45.
A.
Ghanbari
,
V.
Nock
,
S.
Johari
,
R.
Blaikie
,
X.
Chen
, and
W.
Wang
, “
A micropillar-based on-chip system for continuous force measurement of C. elegans
,”
J. Micromech. Microeng.
22
,
095009
(
2012
).
46.
J. C.
Doll
,
N.
Harjee
,
N.
Klejwa
,
R.
Kwon
,
S. M.
Coulthard
,
B.
Petzold
,
M. B.
Goodman
, and
B. L.
Pruitt
, “
SU-8 force sensing pillar arrays for biological measurements
,”
Lab Chip
9
,
1449
1454
(
2009
).
47.
R.
Ghosh
and
J.
Sznitman
, “
Visualization of nematode Caenorhabditis elegans swimming in a liquid drop
,”
J. Vis.
15
,
277
279
(
2012
).
48.
M.-J.
Colbert
,
A. N.
Ragen
,
C.
Fradin
, and
K.
Dalnoki-Veress
, “
Adhesion and membrane tension of single vesicles and living cells using a micropipette-based technique
,”
Eur. Phys. J. E
30
,
117
121
(
2009
).
49.
M.-J.
Colbert
,
F.
Brochard-Wyart
,
C.
Fradin
, and
K.
Dalnoki-Veress
, “
Squeezing and detachment of living cells
,”
Biophys. J.
99
,
3555
3562
(
2010
).
50.
See supplementary material at http://dx.doi.org/10.1063/1.4897651 for examples of RFT fits for swimming near one and two boundaries, and for movies of the worm swimming before and after confinement.

Supplementary Material

You do not currently have access to this content.