Diel vertical migration of plankton has been proposed to affect global ocean circulation to a degree comparable to winds and tides. This biomixing process has never been directly observed, however, due to the inability to predict its occurrence in situ or to reproduce it in a laboratory setting. Furthermore, it has been argued that the energy imparted to the ocean by plankton migrations occurs at the scale of individual organisms, which is too small to impact ocean mixing. We describe the development of a multi-laser guidance system that leverages the phototactic abilities of plankton to achieve controllable vertical migrations concurrently with laser velocimetry of the surrounding flow. Measurements in unstratified fluid show that the hydrodynamic interactions between neighboring swimmers establish an alternate energy transfer route from the small scales of individually migrating plankton to significantly larger scales. Observations of laser-induced vertical migrations of Artemia salina reveal the appearance of a downward jet, which triggers a Kelvin-Helmholtz instability that results in the generation of eddy-like structures with characteristic length scales much larger than the organisms. The measured energy spectrum is consistent with these findings and indicates energy input at large scales, despite the small individual size of the organisms. These results motivate the study of biomixing in the presence of stratification to assess the contribution of migrating zooplankton to local and global ocean dynamics. The laser control methodology developed here enables systematic study of the relevant processes.

1.
M. E.
Huntley
and
M.
Zhou
, “
Influence of animals on turbulence in the sea
,”
Mar. Ecol. Prog. Ser.
273
,
65
79
(
2004
).
2.
W. K.
Dewar
,
R. J.
Bingham
,
R. L.
Iverson
,
D. P.
Nowacek
,
L. C. S.
Laurent
, and
P. H.
Wiebe
, “
Does the marine biosphere mix the ocean?
J. Mar. Res.
64
,
541
561
(
2006
).
3.
E.
Kunze
,
J. F.
Dower
,
I.
Beveridge
,
R.
Dewey
, and
K. P.
Bartlett
, “
Observations of biologically generated turbulence in a coastal inlet
,”
Science
313
,
1768
1770
(
2006
).
4.
K.
Katija
, “
Biogenic inputs to ocean mixing
,”
J. Exp. Biol.
215
,
1040
1049
(
2012
).
5.
C. M.
Moore
,
M. M.
Mills
,
K. R.
Arrigo
,
I.
Berman-Frank
,
L.
Bopp
,
P. W.
Boyd
,
E. D.
Galbraith
,
R. J.
Geider
,
C.
Guieu
,
S. L.
Jaccard
,
T. D.
Jickells
,
J. L.
Roche
,
T. M.
Lenton
,
N. M.
Mahowald
,
E.
Marañón
,
I.
Marinov
,
J. K.
Moore
,
T.
Nakatsuka
,
A.
Oschlies
,
M. A.
Saito
,
T. F.
Thingstad
,
A.
Tsuda
, and
O.
Ulloa
, “
Processes and patterns of oceanic nutrient limitation
,”
Nature Geo.
6
,
701
710
(
2013
).
6.
K. L.
Denman
and
A. E.
Gargett
, “
Biological-physical interactions in the upper ocean: The role of vertical and small scale transport processes
,”
Ann. Rev. Fluid Mech.
27
,
225
255
(
1995
).
7.
W.
Munk
and
C.
Wunsch
, “
Abyssal recipes II: Energetics of tidal and wind mixing
,”
Deep Sea Res. I
45
,
1977
2010
(
1998
).
8.
A. W.
Visser
, “
Biomixing of the oceans?
Science
316
,
838
839
(
2007
).
9.
K.
Katija
and
J. O.
Dabiri
, “
A viscosity-enhanced mechanism for biogenic ocean mixing
,”
Nature (London)
460
,
624
626
(
2009
).
10.
T. R.
Osborn
, “
Estimates of the local rate of vertical diffusion from dissipation measurements
,”
J. Phys. Oceanogr.
10
,
83
89
(
1980
).
11.
S. A.
Thorpe
,
The Turbulent Ocean
(
Cambridge University Press
,
2005
).
12.
N. S.
Oakey
, “
Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements
,”
J. Phys. Oceanogr.
12
,
256
271
(
1982
).
13.
C.
Darwin
, “
Note on hydrodynamics
,”
Proc. Camb. Phil. Soc.
49
,
342
354
(
1953
).
14.
This excludes the Stokes flow limit, i.e., large scale fluid transport may occur provided the organisms are sufficiently large to swim relative to the local flow.
15.
G.
Subramanian
, “
Viscosity-enhanced bio-mixing of the oceans
,”
Curr. Sci.
98
,
1103
1108
(
2010
).
16.
C.
Noss
and
A.
Lorke
, “
Zooplankton induced currents and fluxes in stratified waters
,”
Water Qual. Res. J. Can.
47
,
276
286
(
2012
).
17.
N. A.
Hill
and
T. J.
Pedley
, “
Bioconvection
,”
Fluid Dyn. Res.
37
,
1
20
(
2005
).
18.
D. L.
Koch
and
G.
Subramanian
, “
Collective hydrodynamics of swimming microorganisms: Living fluids
,”
Ann. Rev. Fluid Mech.
43
,
637
659
(
2011
).
19.
J. O.
Dabiri
, “
Role of vertical migration in biogenic ocean mixing
,”
Geophys. Res. Lett.
37
,
L11602
, doi: (
2010
).
20.
S.
Rousseau
,
E.
Kunze
,
R.
Dewey
,
K.
Bartlett
, and
J.
Dower
, “
On turbulence production by swimming marine organisms in the open ocean and coastal waters
,”
J. Phys. Oceanogr.
40
,
2107
2121
(
2010
).
21.
C.
Noss
and
A.
Lorke
, “
Direct observation of biomixing by vertically migrating zooplankton
,”
Limnol. Oceanogr.
59
,
724
732
(
2014
).
22.
Encyclopedia Britannica Online
, s.v. “
Brine shrimp
,” see http://www.britannica.com/EBchecked/topic/79674/brine-shrimp (accessed August 26,
2014
).
23.
C. M.
Owens
, “
Behavioral assay to determine photosensitivity of early-stage nauplii of the brine shrimp Artemia franciscana
,” B.S. thesis (
Wagner College
,
2002
).
24.
D. O.
Pushkin
,
H.
Shum
, and
J. M.
Yeomans
, “
Fluid transport by individual microswimmers
,”
J. Fluid Mech.
726
,
5
25
(
2013
).
25.
A. M.
Leshansky
and
L. M.
Pismen
, “
Do small swimmers mix the ocean?
,”
Phys. Rev. E
82
,
025301
(R) (
2010
).
26.
J.
Thiffeault
and
S.
Childress
, “
Stirring by swimming bodies
,”
Phys. Lett. A
374
,
3487
3490
(
2010
).
27.
See supplementary material at http://dx.doi.org/10.1063/1.4895655 for videos 1 and 2 showing the measured velocity fields at the beginning and middle of the migration, respectively, of representative vertical migrations.
28.
A. E.
Perry
,
S.
Henbest
, and
M. S.
Chong
, “
A theoretical and experimental study of wall turbulence
,”
J. Fluid Mech.
165
,
163
199
(
1986
).
29.
J.
Jimenez
, “
The physics of wall turbulence
,”
Phys. A
263
,
252
262
(
1999
).
30.
W. M.
Hamner
and
P. P.
Hamner
, “
Behavior of Antarctic krill (Euphausia superba): School, foraging, and antipredatory behavior
,”
Can. J. Fish. Aquat. Sci.
57
,
192
202
(
2000
).
31.
D.
Guihen
,
S.
Fielding
,
E. J.
Murphy
,
K. J.
Heywood
, and
G.
Griffiths
, “
An assessment of the use of ocean gliders to undertake acoustic measurements of zooplankton: The distribution and density of Antarctic krill (Euphausia superba) in the Weddell Sea
,”
Limnol. Oceanogr.: Methods
12
,
373
389
(
2014
).
32.
C.
Ho
and
P.
Huerre
, “
Perturbed free shear layers
,”
Ann. Rev. Fluid Mech.
16
,
365
424
(
1984
).
33.
E.
Kunze
,
J. F.
Dower
,
R.
Dewey
,
E. A.
D’Asaro
, and
A. W.
Visser
, “
Mixing it up with krill (with response)
,”
Science
318
,
1239
(
2007
).
34.
A. G. W.
Lawrie
and
S. B.
Dalziel
, “
Rayleigh-Taylor mixing in an otherwise stable stratification
,”
J. Fluid Mech.
688
,
507
527
(
2011
).

Supplementary Material

You do not currently have access to this content.