Secondary flow cells are commonly observed in straight laboratory channels, where they are often associated with duct corners. Here, we present velocity measurements acquired with an acoustic Doppler current profiler in a straight reach of the Seine river (France). We show that a remarkably regular series of stationary flow cells spans across the entire channel. They are arranged in pairs of counter-rotating vortices aligned with the primary flow. Their existence away from the river banks contradicts the usual interpretation of these secondary flow structures, which invokes the influence of boundaries. Based on these measurements, we use a depth-averaged model to evaluate the momentum transfer by these structures, and find that it is comparable with the classical turbulent transfer.

1.
Y.
Forterre
and
O.
Pouliquen
, “
Stability analysis of rapid granular chute flows: Formation of longitudinal vortices
,”
J. Fluid Mech.
467
,
361
387
(
2002
).
2.
H.
Pabiou
,
S.
Mergui
, and
C.
Benard
, “
Wavy secondary instability of longitudinal rolls in Rayleigh-Bénard-Poiseuille flows
,”
J. Fluid Mech.
542
,
175
194
(
2005
).
3.
H.
Jeffreys
, “
On the transverse circulation in streams
,”
Mathematical Proceedings of the Cambridge Philosophical Society
(
Cambridge University Press
,
1929
), Vol.
25
, pp.
20
25
.
4.
J.
Znaien
,
Y.
Hallez
,
F.
Moisy
,
J.
Magnaudet
,
J. P.
Hulin
,
D.
Salin
, and
E. J.
Hinch
, “
Experimental and numerical investigations of flow structure and momentum transport in a turbulent buoyancy-driven flow inside a tilted tube
,”
Phys. Fluids
21
,
115102
(
2009
).
5.
Y.
Hallez
and
J.
Magnaudet
, “
Turbulence-induced secondary motion in a buoyancy-driven flow in a circular pipe
,”
Phys. Fluids
21
,
081704
(
2009
).
6.
J.
Rodriguez
and
M.
Garcia
, “
Laboratory measurements of 3-D flow patterns and turbulence in straight open channel with rough bed
,”
J. Hydraul. Res.
46
,
454
465
(
2008
).
7.
K.
Blanckaert
,
A.
Duarte
, and
A. J.
Schleiss
, “
Influence of shallowness, bank inclination and bank roughness on the variability of flow patterns and boundary shear stress due to secondary currents in straight open-channels
,”
Adv. Water Resour.
33
,
1062
1074
(
2010
).
8.
I.
Albayrak
and
U.
Lemmin
, “
Secondary currents and corresponding surface velocity patterns in a turbulent open-channel flow over a rough bed
,”
J. Hydraul. Eng.
137
,
1318
1334
(
2011
).
9.
K.
Shiono
and
D.
Knight
, “
Turbulent open-channel flows with variable depth across the channel
,”
J. Fluid Mech.
222
,
617
646
(
1991
).
10.
I.
Nezu
and
H.
Nakagawa
,
Turbulence in Open-Channel Flows
,
IAHR Monographs
(
A.A. Balkema
,
Rotterdam
,
1993
).
11.
L.
Prandtl
,
Essentials of Fluid Dynamics: With Applications to Hydraulics Aeronautics, Meteorology, and Other Subjects
(
Blackie & Son
,
Glasgow
,
1952
).
12.
E.
Brundrett
and
W.
Baines
, “
The production and diffusion of vorticity in duct flow
,”
J. Fluid Mech.
19
,
375
394
(
1963
).
13.
B.
Galletti
and
A.
Bottaro
, “
Large-scale secondary structures in duct flow
,”
J. Fluid Mech.
512
,
85
94
(
2004
).
14.
H.
Einstein
and
H.
Li
, “
Secondary currents in straight channels
,”
Trans. Am. Geophys. Union
39
,
1085
1088
(
1958
).
15.
F.
Gessner
, “
The origin of secondary flow in turbulent flow along a corner
,”
J. Fluid Mech.
58
,
1
25
(
1973
).
16.
A.
Demuren
, “
Calculation of turbulence-driven secondary motion in ducts with arbitrary cross section
,”
AIAA J.
29
,
531
537
(
1991
).
17.
A.
Husser
and
S.
Biringen
, “
Direct numerical simulation of turbulent flow in a square duct
,”
J. Fluid Mech.
257
,
65
95
(
1993
).
18.
F.
Metivier
, and
L.
Barrier
, “
Alluvial landscape evolution: What do we know about metamorphosis of gravel bed meandering and braided streams
,” in
Gravel-bed Rivers: Processes, Tools, Environments
, edited by
M.
Church
,
P.
Biron
, and
A.
Roy
(
Wiley & Sons, Chichester
,
2012
), Chap. 34, pp.
474
501
.
19.
S.
Ikeda
, “
Self-formed straight channels in sandy beds
,”
J. Hydraul. Div.
107
,
389
406
(
1981
).
20.
M.
Colombini
and
G.
Parker
, “
Longitudinal streaks
,”
J. Fluid Mech.
304
,
161
184
(
1995
).
21.
V.
Vanoni
, “
Experiments on the transportation of suspended sediments by water
,” Ph.D. thesis,
California Institute of Technology
,
1940
.
22.
A.
Gargett
, “
Observing turbulence with a modified acoustic Doppler current profiler
,”
J. Atmos. Oceanic Technol.
11
,
1592
(
1994
).
23.
R.
Gordon
, “
Principles of operation a practical primer
,” Technical Report No. 951–6069 (
RD Instruments
, San Diego,
1996
).
24.
RD Instruments
, “
ADCP coordinate transformation-formulas and calculations: RD Instruments
,” Technical Report No. N 951-6079-00, San Diego,
1998
.
25.
M.
Stacey
,
S.
Monismith
, and
J.
Burau
, “
Measurements of Reynolds stress profiles in unstratified tidal flow
,”
J. Geophys. Res.
104
,
10933
10949
, doi: (
1999
).
26.
E.
Nystrom
,
C.
Rehmann
, and
K.
Oberg
, “
Evaluation of mean velocity and turbulence measurements with ADCPs
,”
J. Hydraul. Eng.
133
,
1310
(
2007
).
27.
A.
Gibson
, “
On the depression of the filament of maximum velocity in a stream flowing through an open channel
,”
Proc. R. Soc. London, Ser. A
82
,
149
159
(
1909
).
28.
D. A.
Lyn
,
Sedimentation Engineering: Processes, Measurements, Modeling, and Practice
(
Reston
,
2008
), pp.
763
826
.
29.
J.
Hervouet
,
Hydrodynamics of Free Surface Flows: Modelling with the Finite Element Method
(
John Wiley & Sons
,
Hoboken
,
2007
).
30.
I.
Nezu
and
W.
Rodi
, “
Open-channel flow measurements with a laser Doppler anemometer
,”
J. Hydraul. Eng.
112
,
335
355
(
1986
).
31.
M. H.
García
,
Sedimentation Engineering: Processes, Measurements, Modeling, and Practice
(
ASCE Publications
,
Reston
,
2008
), Chap. 2.2, pp.
24
34
.
32.
B.
Audoly
,
H.
Berestycki
, and
Y.
Pomeau
, “
Réaction diffusion en écoulement stationnaire rapide
,”
C. R. Acad. Sci. Ser. II B Mech. Phys. Astron.
328
,
255
262
(
2000
).
33.
A.
Chezy
, “
Formule pour trouver la vitesse de l'eau conduite dans une rigole donnée
Annales des Ponts et Chaussées
(
1776
), Vol.
61
, pp.
165
269
.
34.
M. S.
Yalin
and
A. M.
Ferreira da Silva
,
Fluvial Processes
(
International Association of Hydraulic Engineering and Research Monograph
,
Madrid
,
2001
), p.
197
.
35.
J.
Bouchez
,
E.
Lajeunesse
,
J.
Gaillardet
,
C.
France-Lanord
,
P.
Dutra-Maia
, and
L.
Maurice
, “
Turbulent mixing in the Amazon River: The isotopic memory of confluences
,”
Earth Planet. Sci. Lett.
290
,
37
43
(
2010
).
36.
G.
Wanmin
and
P. A.
Taylor
, “
Turbulent boundary-layer flow over fixed aerodynamically rough two-dimensional sinusoidal waves
,”
J. Fluid Mech.
312
,
1
31
(
1996
).
37.
Y.
Aihara
, “
Formation of longitudinal vortices in the sublayer due to boundary-layer turbulence
,”
J. Fluid Mech.
214
,
111
129
(
1990
).
38.
I.
Langmuir
, “
Surface motion of water induced by wind
,”
Science
87
,
119
123
(
1938
).
39.
Y.
Forterre
and
O.
Pouliquen
, “
Longitudinal vortices in granular flows
,”
Phys. Rev. Lett.
86
,
5886
5889
(
2001
).
You do not currently have access to this content.