We study the shock wave structure in a rarefied polyatomic gas based on a simplified model of extended thermodynamics in which the dissipation is due only to the dynamic pressure. In this case the differential system is very simple because it is a variant of Euler system with a new scalar equation for the dynamic pressure [T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama, Phys. Lett. A376, 27992803 (2012)]. It is shown that this theory is able to describe the three types of the shock wave structure observed in experiments: the nearly symmetric shock wave structure (Type A, small Mach number), the asymmetric structure (Type B, moderate Mach number), and the structure composed of thin and thick layers (Type C, large Mach number).

1.
W. G.
Vincenti
and
C. H.
Kruger
 Jr.
,
Introduction to Physical Gas Dynamics
(
John Wiley and Sons
,
New York/London/Sydney
,
1965
).
2.
Ya. B.
Zel'dovich
and
Yu. P.
Raizer
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
(
Dover Publications
,
Mineola/New York
,
2002
).
3.
E. F.
Smiley
,
E. H.
Winkler
, and
Z. I.
Slawsky
, “
Measurement of the vibrational relaxation effect in CO2 by means of shock tube interferograms
,”
J. Chem. Phys.
20
,
923
(
1952
).
4.
E. F.
Smiley
and
E. H.
Winkler
, “
Shock-tube measurements of vibrational relaxation
,”
J. Chem. Phys.
22
,
2018
(
1954
).
5.
W. C.
Griffith
and
W.
Bleakney
, “
Shock waves in gases
,”
Am. J. Phys.
22
,
597
(
1954
).
6.
W.
Griffith
,
D.
Brickl
, and
V.
Blackman
, “
Structure of shock waves in polyatomic gases
,”
Phys. Rev.
102
,
1209
(
1956
).
7.
N. H.
Johannesen
,
H. K.
Zienkiewicz
,
P. A.
Blythe
, and
J. H.
Gerrard
, “
Experimental and theoretical analysis of vibrational relaxation regions in carbon dioxide
,”
J. Fluid Mech.
13
,
213
(
1962
).
8.
W. C.
Griffith
and
A.
Kenny
, “
On fully-dispersed shock waves in carbon dioxide
,”
J. Fluid Mech.
3
,
286
(
1957
).
9.
T.
Arima
,
S.
Taniguchi
,
T.
Ruggeri
, and
M.
Sugiyama
, “
Extended thermodynamics of dense gases
,”
Cont. Mech. Thermodyn.
24
,
271
(
2012
).
10.
T.
Arima
and
M.
Sugiyama
, “
Characteristic features of extended thermodynamics of dense gases
,”
Atti Accad. Pelorit. Pericol.
91
(
Suppl. 1
),
A1
(
2013
).
11.
T.
Arima
,
S.
Taniguchi
,
T.
Ruggeri
, and
M.
Sugiyama
, “
Extended thermodynamics of real gases with dynamic pressure: An extension of Meixner's theory
,”
Phys. Lett. A
376
,
2799
2803
(
2012
).
12.
D.
Gilbarg
and
D.
Paolucci
, “
The structure of shock waves in the continuum theory of fluids
,”
J. Rat. Mech. Anal.
2
,
617
(
1953
).
13.
H. A.
Bethe
and
E.
Teller
, “
Deviations from thermal equilibrium in shock waves
,” reprinted by Engineering Research Institute, University of Michigan,
1941
.
14.
T.
Arima
,
S.
Taniguchi
,
T.
Ruggeri
, and
M.
Sugiyama
, “
Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics
,”
Cont. Mech. Thermodyn.
25
,
727
(
2013
).
15.
G.
Boillat
and
T.
Ruggeri
, “
Hyperbolic principal subsystems: Entropy convexity and subcharacteristic conditions
,”
Arch. Rat. Mech. Anal.
137
,
305
(
1997
).
16.
T.
Arima
,
T.
Ruggeri
,
M.
Sugiyama
, and
S.
Taniguchi
, “
On the six-field model of fluids based on extended thermodynamics
,” Meccanica (to be published).
17.
I.
Müller
and
T.
Ruggeri
,
Rational Extended Thermodynamics
, 2nd ed. (
Springer
,
New York
,
1998
).
18.
T.
Ruggeri
, “
Galilean invariance and entropy principle for systems of balance laws: The structure of the extended thermodynamics
,”
Cont. Mech. Thermodyn.
1
,
3
(
1989
).
19.
E.
Ikenberry
and
C.
Truesdell
, “
On the pressure and the flux of energy in a gas according to Maxwell's kinetic theory
,”
J. Rat. Mech. Anal.
5
,
1
(
1956
).
20.
M.
Pavić
,
T.
Ruggeri
, and
S.
Simić
, “
Maximum entropy principle for polyatomic gases
,”
Physica A
392
,
1302
(
2013
).
21.
JSME Data Book: Thermophysical Properties of Fluids
(
Japan Society of Mechanical Engineers
,
Tokyo
,
1983
).
22.
W. M.
Haynes
and
D. R.
Lide
(eds),
CRC Handbook of Chemistry and Physics
, 91st ed. (
CRC Press
,
Boca Raton, FL
,
2010
).
23.
G.
Boillat
and
T.
Ruggeri
, “
On the shock structure problem for hyperbolic system of balance laws and convex entropy
,”
Cont. Mech. Thermodyn.
10
,
285
(
1998
).
24.
W.
Weiss
, “
Continuous shock structure in extended thermodynamics
,”
Phys. Rev. E
52
,
R5760
(
1995
).
25.
P.
Lax
, “
Hyperbolic systems of conservation laws II
,”
Commun. Pure Appl. Math.
10
,
537
(
1957
).
26.
T.
Arima
,
S.
Taniguchi
,
T.
Ruggeri
, and
M.
Sugiyama
, “
Monatomic rarefied gas as a singular limit of poyatomic gas in extended thermodynamics
,”
Phys. Lett. A
377
,
2136
(
2013
).
You do not currently have access to this content.