The magnetohydrodynamic Richtmyer-Meshkov instability is investigated for the case where the initial magnetic field is unperturbed and aligned with the mean interface location. For this initial condition, the magnetic field lines penetrate the perturbed density interface, forbidding a tangential velocity jump and therefore the presence of a vortex sheet. Through simulation, we find that the vorticity distribution present on the interface immediately after the shock acceleration breaks up into waves traveling parallel and anti-parallel to the magnetic field, which transport the vorticity. The interference of these waves as they propagate causes the perturbation amplitude of the interface to oscillate in time. This interface behavior is accurately predicted over a broad range of parameters by an incompressible linearized model derived presently by solving the corresponding impulse driven, linearized initial value problem. Our use of an equilibrium initial condition results in interface motion produced solely by the impulsive acceleration. Nonlinear compressible simulations are used to investigate the behavior of the transverse field magnetohydrodynamic Richtmyer-Meshkov instability, and the performance of the incompressible model, over a range of shock strengths, magnetic field strengths, perturbation amplitudes and Atwood numbers.

1.
G. H.
Markstein
, “
Flow disturbances induced near a slightly wavy contact surface, or flame front, traversed by a shock wave
,”
J. Aeronaut. Sci.
24
,
238
(
1957
).
2.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
,
297
(
1960
).
3.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
,
101
(
1969
).
4.
M.
Brouillette
, “
The Richtmyer-Meshkov instability
,”
Annu. Rev. Fluid Mech.
34
,
445
(
2002
).
5.
J. D.
Lindl
,
P.
Amendt
,
R. L.
Berger
,
S. G.
Glendinning
,
S. H.
Glenzer
,
S. W.
Haan
,
R. L.
Kauffman
,
O. L.
Landen
, and
L. J.
Suter
, “
The physics basis for ignition using indirect-drive targets on the National Ignition Facility
,”
Phys. Plasmas
11
,
339
(
2004
).
6.
J. D.
Lindl
,
R. L.
McCrory
, and
E. M.
Campbell
, “
Progress toward ignition and burn propagation in inertial confinement fusion
,”
Phys. Today
45
,
32
(
1992
).
7.
D.
Arnett
, “
The role of mixing in astrophysics
,”
Astrophys. J., Suppl. Ser.
127
,
213
(
2000
).
8.
J.
Yang
,
T.
Kubota
, and
E. E.
Zukoski
, “
Applications of shock induced mixing to supersonic combustion
,”
AIAA J.
31
,
854
(
1993
).
9.
A. M.
Khokhlov
,
E. S.
Oran
, and
G. O.
Thomas
, “
Numerical simulation of deflagration to- detonation transition: the role of shock-flame interactions in turbulent flames
,”
Combust. Flame
117
,
323
(
1999
).
10.
R. J.
Stalker
and
K. C. A.
Crane
, “
Driver gas contamination in a high-enthalpy reflected shock-tunnel
,”
AIAA J.
16
,
277
(
1978
).
11.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Oxford University Press
,
1961
).
12.
R.
Samtaney
, “
Suppression of the Richtmyer-Meshkov instability in the presence of a magnetic field
,”
Phys. Fluids
15
,
L53
(
2003
).
13.
V.
Wheatley
,
D. I.
Pullin
, and
R.
Samtaney
, “
Regular shock refraction at an oblique planar density interface in manetohyrodynamics
,”
J. Fluid Mech.
522
,
179
(
2005
).
14.
V.
Wheatley
,
R.
Samtaney
, and
D. I.
Pullin
, “
Stability of an impulsively accelerated perturbed density interface in incompressible MHD
,”
Phys. Rev. Lett.
95
,
125002
(
2005
).
15.
V.
Wheatley
,
R.
Samtaney
, and
D. I.
Pullin
, “
The Richtmyer-Meshkov instability in magnetohydrodynamics
,”
Phys. Fluids
21
,
082102
(
2009
).
16.
J. T.
Cao
,
Z. W.
Wu
,
H. J.
Ren
, and
D.
Li
, “
Effects of shear flow and transverse magnetic field on Richtmyer-Meshkov instability
,”
Phys. Plasmas
15
,
042102
(
2008
).
17.
T.
Sano
,
K.
Nishihara
,
C.
Matsuoka
, and
T.
Inoue
, “
Magnetic field amplification associated with the Richtmyer-Meshkov instability
,”
Astrophys. J.
758
,
126
(
2012
).
18.
N. E.
Lanier
,
C. W.
Barnes
,
S. H.
Batha
,
R. D.
Day
,
G. R.
Magelssen
,
J. M.
Scott
,
A. M.
Dunne
,
K. W.
Parker
, and
S. D.
Rothman
, “
Multimode seeded Richtmyer-Meshkov mixing in a convergent, compressible, miscible plasma system
,”
Phys. Plasmas
10
,
1816
(
2003
).
19.
S. H. R.
Hosseini
and
K.
Takayama
, “
Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves
,”
Phys. Fluids
17
,
084101
(
2005
).
20.
K. O.
Mikaelian
, “
Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified cylindrical shells
,”
Phys. Fluids
17
,
094105
(
2005
).
21.
M.
Lombardini
and
D. I.
Pullin
, “
Small-amplitude perturbations in the three-dimensional cylindrical Richtmyer-Meshkov instability
,”
Phys. Fluids
21
,
114103
(
2009
).
22.
S. H.
Glenzer
,
B. J.
MacGowan
,
P.
Michel
,
N. B.
Meezan
,
L. J.
Suter
,
S. N.
Dixit
,
J. L.
Kline
,
G. A.
Kyrala
,
D. K.
Bradley
,
D. A.
Callahan
,
E. L.
Dewald
,
L.
Divol
,
E.
Dzenitis
,
M. J.
Edwards
,
A. V.
Hamza
,
C. A.
Haynam
,
D. E.
Hinkel
,
D. H.
Kalantar
,
J. D.
Kilkenny
,
O. L.
Landen
,
J. D.
Lindl
,
S.
LePape
,
J. D.
Moody
,
A.
Nikroo
,
T.
Parham
,
M. B.
Schneider
,
R. P. J.
Town
,
P.
Wegner
,
K.
Widmann
,
P.
Whitman
,
B. K. F.
Young
,
B.
Van Wonterghem
,
L. J.
Atherton
, and
E. I.
Moses
, “
Symmetric inertial confinement fusion implosions at ultra-high laser energies
,”
Science
327
,
1228
(
2010
).
23.
M.
Hohenberger
,
P.-Y.
Chang
,
G.
Fiskel
,
J. P.
Knauer
,
R.
Betti
,
F. J.
Marshall
,
D. D.
Meyerhofer
,
F. H.
Séguin
, and
R. D.
Petrasso
, “
Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser
,”
Phys. Plasmas
19
,
056306
(
2012
).
24.
D.
Ryu
and
T. W.
Jones
, “
Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow
,”
Astrophys. J.
442
,
228
(
1995
).
25.
G. W.
Sutton
and
A.
Sherman
,
Engineering Magnetohydrodynamics
(
McGraw-Hill
,
1965
).
26.
R.
Samtaney
,
P.
Colella
,
T. J.
Ligocki
,
D. F.
Martin
, and
S. C.
Jardin
, “
An adaptive mesh semi-implicit conservative unsplit method for resistive MHD
,”
J. Phys.: Conf. Ser.
16
,
40
(
2005
).
27.
F.
Stern
,
R. V.
Wilson
,
H. W.
Coleman
, and
E. G.
Paterson
, “
Comprehensive approach to verification and validation of CFD simulations—Part 1: Methodology and procedures
,”
J. Fluids Eng.
123
,
793
(
2001
).
You do not currently have access to this content.