Analysis of fluxes across the turbulent/non-turbulent interface (TNTI) of turbulent boundary layers is performed using data from two-dimensional particle image velocimetry (PIV) obtained at high Reynolds numbers. The interface is identified with an iso-surface of kinetic energy, and the rate of change of total kinetic energy (K) inside a control volume with the TNTI as a bounding surface is investigated. Features of the growth of the turbulent region into the non-turbulent region by molecular diffusion of K, viscous nibbling, are examined in detail, focussing on correlations between interface orientation, viscous stress tensor elements, and local fluid velocity. At the level of the ensemble (Reynolds) averaged Navier-Stokes equations (RANS), the total kinetic energy K is shown to evolve predominantly due to the turbulent advective fluxes occurring through an average surface which differs considerably from the local, corrugated, sharp interface. The analysis is generalized to a hierarchy of length-scales by spatial filtering of the data as used commonly in Large-Eddy-Simulation (LES) analysis. For the same overall entrainment rate of total kinetic energy, the theoretical analysis shows that the sum of resolved viscous and subgrid-scale advective flux must be independent of scale. Within the experimental limitations of the PIV data, the results agree with these trends, namely that as the filter scale increases, the viscous resolved fluxes decrease while the subgrid-scale advective fluxes increase and tend towards the RANS values at large filter sizes. However, a definitive conclusion can only be made with fully resolved three-dimensional data, over and beyond the large dynamic spatial range presented here. The qualitative trends from the measurement results provide evidence that large-scale transport due to the energy-containing eddies determines the overall rate of entrainment, while viscous effects at the smallest scales provide the physical mechanism ultimately responsible for entrainment. Data spanning over a decade in Reynolds number suggest that the fluxes (or the entrainment velocity) scale with the friction velocity (or equivalently the local turbulent fluctuating velocity), whereas Taylor microscale and boundary-layer thickness are the appropriate length scales at small and large filter sizes, respectively.

1.
S.
Corrsin
and
A. L.
Kistler
, “
Free-stream boundaries of turbulent flows
,” NACA Technical Note No. 1244 (
1955
).
2.
O. M.
Phillips
, “
The irrotational motion outside a free boundary layer
,”
Proc. Camb. Phil. Soc.
51
,
220
(
1955
).
3.
A.
Townsend
,
Structure of Turbulent Shear Flow
(
Cambridge University Press
,
1976
).
4.
D. J.
Carruthers
and
J. C. R.
Hunt
, “
Momentum and scalar transport at the turbulent/non-turbulent interface of a jet
,”
J. Fluid Mech.
165
,
475
501
(
1986
).
5.
K.
Sreenivasan
and
C.
Meneveau
, “
The fractal facets of turbulence
,”
J. Fluid Mech.
173
,
357
386
(
1986
).
6.
J.
Westerweel
,
C.
Fukushima
,
J. M.
Pedersen
, and
J. C. R.
Hunt
, “
Momentum and scalar transport at the turbulent/non-turbulent interface of a jet
,”
J. Fluid Mech.
631
,
199
230
(
2009
).
7.
B. B.
Mandelbrot
,
The Fractal Geometry of Nature
(
W. H. Freeman
,
New York
,
1982
).
8.
S.
Lovejoy
, “
Area-perimeter relation for rain and cloud areas
,”
Science
216
,
185
187
(
1982
).
9.
F.
Gouldin
,
K.
Bray
, and
J.
Chen
, “
Chemical closure model for fractal flamelets
,”
Combust. Flame
77
,
241
(
1989
).
10.
K.
Sreenivasan
,
R.
Ramshankar
, and
C.
Meneveau
, “
Mixing, entrainment and fractal dimensions of surfaces in turbulent flows
,”
Proc. R. Soc. London, Ser. A
421
,
79
108
(
1989
).
11.
C.
Meneveau
and
K.
Sreenivasan
, “
Interface dimension in intermittent turbulence
,”
Phys. Rev. A
41
,
2246
(
1990
).
12.
J.
Mathew
and
A.
Basu
, “
Some characteristics of entrainment at a cylindrical turbulence boundary
,”
Phys. Fluids
14
,
2065
2072
(
2002
).
13.
J.
Westerweel
,
C.
Fukushima
,
J. M.
Pedersen
, and
J. C. R.
Hunt
, “
Mechanics of the turbulent-nonturbulent interface of a jet
,”
Phys. Rev. Lett.
95
,
174501
(
2005
).
14.
J. C. R.
Hunt
,
I.
Eames
,
C. B.
da Silva
, and
J.
Westerweel
, “
Interfaces and inhomogeneous turbulence
,”
Philos. Trans. R. Soc. London, Ser. A
369
,
811
832
(
2011
).
15.
M.
Holzner
,
A.
Liberzon
,
N.
Nikitin
,
W.
Kinzelbach
, and
A.
Tsinober
, “
Small-scale aspects of flows in proximity of the turbulent/nonturbulent interface
,”
Phys. Fluids
19
,
071702
(
2007
).
16.
J.
Philip
and
I.
Marusic
, “
Large-scale eddies and their role in entrainment in turbulent jets and wakes
,”
Phys. Fluids
24
,
055108
(
2012
).
17.
L. S. G.
Kovasznay
, “
Structure of the turbulent boundary layer
,”
Phys. Fluids.
10
,
S25
S30
(
1967
).
18.
C. B.
da Silva
,
R. J. N.
dos Reis
, and
J. C. F.
Pereira
, “
The intense vorticity structures near the turbulent/non-turbulent interface in a jet
,”
J. Fluid. Mech.
685
,
165
190
(
2011
).
19.
C. M.
de Silva
,
J.
Philip
,
K.
Chauhan
,
C.
Meneveau
, and
I.
Marusic
, “
Multiscale geometry and scaling of the turbulent/non-turbulent interface in high Reynolds number boundary layers
,”
Phys. Rev. Letts.
111
,
044501
(
2013
).
20.
M.
Khashehchi
,
A.
Ooi
,
J.
Soria
, and
I.
Marusic
, “
Evolution of the turbulent/non-turbulent interface of an axisymmetric turbulent jet
,”
Exp. Fluids
54
,
1449
(
2013
).
21.
W. C.
Reynolds
, “
Large-scale instabilities of turbulent wakes
,”
J. Fluid. Mech.
54
,
481
488
(
1972
).
22.
C. P.
Chen
and
R. F.
Blackwelder
, “
Large-scale motion in a turbulent boundary layer: A study using temperature contamination
,”
J. Fluid Mech.
89
,
1
31
(
1978
).
23.
C. B.
da Silva
and
J. C. F.
Pereira
, “
The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet
,”
Philos. Trans. R. Soc. London, Ser. A
369
,
738
753
(
2011
).
24.
N.
Semin
,
V.
Golub
,
G.
Elsinga
, and
J.
Westerweel
, “
Laminar superlayer in a turbulent boundary layer
,”
Tech. Phys. Lett.
37
,
1154
1157
(
2011
).
25.
K.
Chauhan
,
J.
Philip
,
C. M.
de Silva
,
N.
Hutchins
, and
I.
Marusic
, “
The turbulent/non-turbulent interface and entrainment in a boundary layer
,”
J. Fluid. Mech.
740
,
1
33
(
2014
).
26.
M.
Holzner
,
A.
Liberzon
,
M.
Guala
,
A.
Tsinober
, and
W.
Kinzelbach
, “
Generalized detection of a turbulent front generated by an oscillating grid
,”
Exp. Fluids
41
,
711
719
(
2006
).
27.
C. B.
da Silva
and
R. R.
Taveira
, “
The thickness of the turbulent/nonturbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer
,”
Phys. Fluids
22
,
121702
(
2010
).
28.
M.
Holzner
and
B.
Lüthi
, “
Laminar superlayer at the turbulence boundary
,”
Phys. Rev. Lett.
106
,
134503
(
2011
).
29.
R. J.
Adrian
,
C. D.
Meinhart
, and
C. D.
Tomkins
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid. Mech.
422
,
1
54
(
2000
).
30.
C. M.
de Silva
,
K. A.
Chauhan
,
C. H.
Atkinson
,
N. A.
Buchmann
,
N.
Hutchins
,
J.
Soria
, and
I.
Marusic
, “
Implementation of large scale PIV measurements for wall bounded turbulence at high Reynolds numbers
,” in
Proceedings of the 18th Australasian Fluid Mechanics Conference
, Vol.
18
, edited by
P. A.
Brandner
, and
B. W.
Pearce
(
Launceston
,
Australia
,
2012
), pp.
308
311
.
31.
T. B.
Hedley
and
J. F.
Keffer
, “
Turbulent/non-turbulent decisions in an intermittent flow
,”
J. Fluid Mech.
64
,
625
644
(
1974
).
32.
R. R.
Prasad
and
K. R.
Sreenivasan
, “
Scalar interfaces in digital images of turbulent flows
,”
Exp. Fluids.
7
,
259
264
(
1989
).
33.
H. J.
Catrakis
and
P. E.
Dimotakis
, “
Mixing in turbulent jets: Scalar measures and isosurface geometry
,”
J. Fluid. Mech.
317
,
369
406
(
1996
).
34.
H. J.
Catrakis
,
R.
Aguirre
, and
J.
Ruiz-Plancarte
, “
Area-volume properties of fluid interfaces in turbulence: Scale-local self-similarity and cumulative scale dependence
,”
J. Fluid Mech.
462
,
245
254
(
2002
).
35.
N. D.
Sandham
,
M. G.
Mungal
,
J. E.
Broadwell
, and
W. C.
Reynolds
, “
Scalar entrainment in the mixing layer
,” in
Proceedings of the Summer Program 1988
(
Center for Turbulence Research, Stanford University
,
Stanford, CA
,
1988
), pp.
69
76
.
36.
D.
Bisset
,
J. C. R.
Hunt
, and
M. M.
Rogers
, “
The turbulent/non-turbulent interface bounding a far wake
,”
J. Fluid Mech.
451
,
383
410
(
2002
).
37.
C. B.
da Silva
, “
The behavior of subgrid-scale models near the turbulent/nonturbulent interface in jets
,”
Phys. Fluids
21
,
081702
(
2009
).
38.
J.
Jimenez
,
S.
Hoyas
,
M. P.
Simens
, and
Y.
Mizuno
, “
Turbulent boundary layers and channels at moderate Reynolds numbers
,”
J. Fluid Mech.
657
,
335
360
(
2010
).
39.
R. K.
Anand
,
B. J.
Boersma
, and
A.
Agrawal
, “
Detection of turbulent/non-turbulent interface for an axisymmetric turbulent jet: Evaluation of known criteria and proposal of a new criterion
,”
Exp. Fluids
47
,
995
1007
(
2009
).
40.
G.
Heckstead
, “
Hot-wire measurements in a plane turbulent jet
,”
J. Appl. Mech.
32
,
721
734
(
1965
).
41.
A. J.
Adrian
and
J.
Westerweel
,
Particle Image Velocimetry
(
Cambridge University Press
,
2011
).
42.
U.
Piomelli
,
P.
Moin
, and
J.
Ferziger
, “
Model consistency in large eddy simulation of turbulent channel flows
,”
Phys. Fluids
31
,
1884
(
1988
).
43.
S.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
44.
S.
Liu
,
C.
Meneveau
, and
J.
Katz
, “
On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet
,”
J. Fluid Mech.
275
,
83
(
1994
).
45.
B.
Tao
,
J.
Katz
, and
C.
Meneveau
, “
Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements
,”
J. Fluid Mech.
457
,
35
78
(
2002
).
46.
J.
Chen
,
C.
Meneveau
, and
J.
Katz
, “
Scale interactions of turbulence subjected to a straining-relaxation-destraining cycle
,”
J. Fluid Mech.
562
,
123
150
(
2006
).
47.
M.
van Reeuwijk
and
M.
Holzner
, “
The turbulence boundary of a temporal jet
,”
J. Fluid. Mech.
739
,
257
275
(
2013
).
48.
P.
Saarenrinne
,
M.
Piirto
, and
H.
Eloranta
, “
A correction method for measuring turbulence kinetic energy dissipation rate by PIV
,”
Meas. Sci. Technol.
12
,
1904
1910
(
2001
).
49.
T.
Tanaka
and
J. K.
Eaton
, “
A correction method for measuring turbulence kinetic energy dissipation rate by PIV
,”
Exp. Fluids
42
,
893
902
(
2007
).
50.
P.
Schlatter
and
R.
Örlü
, “
Assessment of direct numerical simulation data of turbulent boundary layers
,”
J. Fluid. Mech.
659
,
116
126
(
2010
).
51.
From the kinetic energy balance provided by Schlatter and Örlü,50 profiles of
$(1/\rho )\partial (\protect \overline{u_3^\prime p^\prime })/\partial y$
(1/ρ)(u3p¯)/y
and
$1/2 \partial (\protect \overline{u_3 u_i u_i})/\partial y$
1/2(u3uiui¯)/y
are obtained, and integrated in the wallnormal direction with their values estimated at about y99 ≈ 0.9, which is adapted to our situation.
52.
M.
Holzner
,
B.
Lüthi
,
A.
Tsinober
, and
W.
Kinzelbach
, “
Acceleration, pressure and related quantities in the proximity of the turbulent/nonturbulent interface
,”
J. Fluid. Mech.
639
,
153
165
(
2009
).
53.
I.
Marusic
and
R. A.
Adrian
, “
Eddies and scales of wall turbulence
,” in
Ten Chapters in Turbulence
, edited by
P. A.
Davidson
,
Y.
Kaneda
, and
K. R.
Sreenivasan
(
Cambridge University Press
,
2012
).
54.
P.
Bradshaw
, “
Irrotational fluctuations near a turbulent boundary layer
,”
J. Fluid. Mech.
27
,
209
230
(
1967
).
You do not currently have access to this content.