We apply a pseudospectral method to numerically study the dynamics of vortices found within a low viscosity non-Newtonian fluid with a Carreau fluid rheology. The application of a Carreau fluid rheology avoids the commonly observed complications in power-law models at zero strain-rate. We find that fluids with a shear thinning rheology will preserve the small scale features of the flow. In particular, for vortex-solid wall interactions, shear thinning fluids can exhibit behavior associated with Newtonian fluids at a much higher Reynolds number. This can include secondary vorticity generation, and multiple vortex-bottom collisions each marked by periods of higher bottom shear rates. Using a variety of experimentally determined parameters from the literature, we argue that these results have direct application to many non-Newtonian fluids, including non-Newtonian fluid mud layers found on lake and ocean bottoms.

1.
C.
Ruyer-Quil
,
S.
Chakraborty
, and
B. S.
Dandapat
, “
Wavy regime of a power-law film flow
,”
J. Fluid Mech.
692
,
220
256
(
2012
).
2.
P. J.
Carreau
, “
Rheological equations from molecular network theories
,” Ph.D. thesis (
University of Wisconsin
,
1968
).
3.
M. P.
Escudier
,
I. W.
Gouldson
, and
D. M.
Jones
, “
Taylor vortices in newtonian and shear-thinning liquids
,”
Proc. R. Soc. London
449
,
155
176
(
1995
).
4.
G.
Bohme
,
L.
Rubart
, and
M.
Stenger
, “
Vortex breakdown in shear-thinning liquids: experiment and numerical simulation
,”
J. Non-Newtonian Fluid Mech.
45
(
1
),
1
20
(
1992
).
5.
N. J.
Balmforth
,
Y.
Forterre
, and
O.
Pouliquen
, “
The viscoplastic stokes layer
,”
J. Non-Newtonian Fluid Mech.
158
(
13
),
46
53
(
2009
).
6.
H. J. H.
Clercx
and
C. H.
Bruneau
, “
The normal and oblique collision of a dipole with a no-slip boundary
,”
Comput. Fluids
35
(
3
),
245
279
(
2006
).
7.
L.
Huang
,
C.
Ng
, and
A.
Chwang
, “
A Fourier-Chebyshev collocation method for the mass transport in a layer of power-law fluid mud
,”
Comput. Methods Appl. Mech. Eng.
195
,
1136
1153
(
2006
).
8.
L.
Huang
and
Q.
Chen
, “
Spectral collocation model for solitary wave attenuation and mass transport over viscous mud
,”
J. Eng. Mech.
135
(
8
),
881
891
(
2009
).
9.
J.
Uddin
,
J. O.
Marston
, and
S. T.
Thoroddsen
, “
Squeeze flow of a carreau fluid during sphere impact
,”
Phys. Fluids
24
,
073104
(
2012
).
10.
C.-O.
Ng
and
C. C.
Mei
, “
Roll waves on a shallow layer of mud modelled as a power-law fluid
,”
J. Fluid Mech.
263
,
151
183
(
1994
).
11.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
(
Wiley
,
Hoboken, New Jersey
,
1960
).
12.
A. S.
Almgren
,
J. B.
Bell
, and
W. Y.
Crutchfield
, “
Approximate projection methods: Part I. inviscid analysis
,”
SIAM J. Sci. Comput. (USA)
22
(
4
),
1139
1159
(
2000
).
13.
L. N.
Trefethen
,
Spectral Methods in Matlab
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA, USA
,
2000
).
14.
G. E.
Karniadakis
,
M.
Israeli
, and
S. A.
Orszag
, “
High-order splitting methods for the incompressible Navier–Stokes equations
,”
J. Comput. Phys.
97
,
414
443
(
1991
).
15.
J. P.
Boyd
,
Chebyshev and Fourier Spectral Methods
, 2nd ed. (
Dover Publications
,
Mineola, New York
,
2001
).
16.
H. J. H.
Clercx
and
G. J. F.
van Heijst
, “
Dissipation of kinetic energy in two-dimensional bounded flows
,”
Phys. Rev. E
65
,
066305
(
2002
).
17.
P.
Kundu
,
Fluid Mechanics
(
Academic Press
,
San Diego
,
1990
).
18.
J. C.
McWilliams
,
Fundamentals of Geophysical Fluid Dynamics
(
Cambridge University Press
,
Cambridge, UK
,
2006
).
19.
R. J.
Munro
, “
The interaction of a vortex ring with a sloped sediment layer: Critical criteria for incipient grain motion
,”
Phys. Fluids
24
,
026604
(
2012
).
20.
C. J.
Subich
,
K. G.
Lamb
, and
M.
Stastna
, “
Simulation of the navierstokes equations in three dimensions with a spectral collocation method
,”
Int. J. Numer. Methods Fluids
73
(
2
),
103
129
(
2013
).
21.
L.
Staron
,
P.-Y.
Lagrée
,
P.
Ray
, and
S.
Popinet
, “
Scaling laws for the slumping of a bingham plastic fluid
,”
J. Rheol.
57
,
1265
(
2013
).
22.
N. J.
Balmforth
and
J. J.
Liu
, “
Roll waves in mud
,”
J. Fluid Mech.
519
,
33
54
(
2004
).
23.
A. D.
Cutler
and
P.
Bradshaw
, “
Strong vortex/boundary layer interactions
,”
Exp. Fluids
14
,
393
401
(
1993
).
24.
A.
Luton
,
S.
Ragab
, and
D.
Telionis
, “
Interaction of spanwise vortices with a boundary layer
,”
Phys. Fluids
7
(
11
),
2757
2765
(
1995
).
25.
M. D.
Ripley
and
L. L.
Pauley
, “
The unsteady structure of two-dimensional steady laminar separation
,”
Phys. Fluids A
5
(
12
),
3099
3106
(
1993
).
You do not currently have access to this content.