We analyze the dynamical response of an isothermal liquid bridge to a step change in the mass force magnitude by numerically solving the three-dimensional Navier-Stokes equations. We study the free surface oscillations caused by both axial and lateral pulses of the mass force. The oscillation amplitude and the dynamical stability limit are calculated for different values of the parameters characterizing the fluid configuration. We examine the stability of one of the liquid bridges to be analyzed in the Japanese and European Research Experiment on Marangoni Instabilities experiment on board of the International Space Station (ISS). We study the response of that liquid bridge to real g-jitter on board of the ISS.

1.
D.
Schwabe
and
A.
Scharmann
, “
Some evidence for the existence and magnitude of a critical Marangoni number for the onset of oscillatory flow in crystal growth melts
,”
J. Cryst. Growth
46
,
125
131
(
1979
).
2.
S.
Nakamura
,
T.
Hibiya
,
K.
Kakimoto
,
N.
Imaishi
,
S.
Nishizawa
,
A.
Hirata
,
K.
Mukai
,
S.
Yoda
, and
T.
Morita
, “
Temperature fluctuations of the Marangoni flow in a liquid bridge of molten silicon under microgravity on board the tr-ia-4 rocket
,”
J. Cryst. Growth
186
,
85
94
(
1998
).
3.
H. C.
Kuhlmann
,
Thermocapillary Convection in Models of Crystal Growth
(
Springer-Verlag
,
Berlin
,
1999
).
4.
H.
Kawamura
,
K.
Nishino
,
S.
Matsumoto
, and
I.
Ueno
, “
Report on microgravity experiments of Marangoni convection aboard international space station
,”
J. Heat Transfer
134
,
031005
(
2012
).
5.
T.
Yano
,
K.
Nishino
,
H.
Kawamura
,
I.
Ueno
,
S.
Matsumoto
,
M.
Ohnishi
, and
M.
Sakurai
, “
3-d ptv measurement of Marangoni convection in liquid bridge in space experiment
,”
Exp. Fluids
53
,
9
20
(
2012
).
6.
Y.
Kamotani
,
S.
Matsumoto
, and
S.
Yoda
, “
Recent developments in oscillatory Marangoni convection
,”
Fluid Dyn. Mater. Process.
2
,
147
160
(
2007
).
7.
D. E.
Melnikov
,
V. M.
Shevtsova
, and
J. C.
Legros
, “
Onset of temporal aperiodicity in high Prandtl number liquid bridge under terrestrial conditions
,”
Phys. Fluids
16
,
1746
1757
(
2004
).
8.
V.
Shevtsova
,
Y.
Gaponenko
, and
A.
Nepomnyashchy
, “
Analysis of thermocapillary flow regimes and oscillatory instability caused by a gas stream along the interface
,”
J. Fluid Mech.
714
,
644
670
(
2013
).
9.
V.
Shevtsova
,
D. E.
Melnikov
, and
A.
Nepomnyashchy
, “
New flow regimes generated by mode coupling in buoyant-thermocapillary convection
,”
Phys. Rev. Lett.
102
,
134503
(
2009
).
10.
R. F.
Dressler
and
N. S.
Sivakumaran
, “
Non-contaminating method to reduce Marangoni convection in microgravity float zones
,”
J. Cryst. Growth
88
,
148
158
(
1988
).
11.
M.
Lappa
, “
On the variety of particle accumulation structures under the effect of g-jitters
,”
J. Fluid Mech.
726
,
160
195
(
2013
).
12.
H. F.
Bauer
, “
Response of a liquid column to unequal counter-directional excitation under zero gravity
,”
Microgravity Sci. Technol.
3
,
34
40
(
1990
).
13.
H.
Bauer
, “
Response of a liquid column to one-sided axial excitation in zero gravity
,”
Forsch. Ingenieurwes.
56
,
14
21
(
1990
).
14.
J. A.
Nicolás
and
J. M.
Vega
, “
Linear oscillations of axisymmetric viscous liquid bridges
,”
Z. Angew. Math. Phys.
51
,
701
731
(
2000
).
15.
R.
Kidambi
, “
Frequency and damping of non-axisymmetric surface oscillations of a viscous axisymmetric liquid bridge
,”
Phys. Fluids
24
,
042103
(
2012
).
16.
J.
Tsamopoulos
,
T. Y.
Chen
, and
A.
Borkar
, “
Viscous oscillations of capillary bridges
,”
J. Fluid Mech.
235
,
579
609
(
1992
).
17.
R.
Kidambi
, “
Frequency and damping of non-axisymmetric surface oscillations of a viscous cylindrical liquid bridge
,”
J. Fluid Mech.
681
,
597
621
(
2011
).
18.
T. Y.
Chen
and
J.
Tsamopoulos
, “
Nonlinear dynamics of capillary bridges: Theory
,”
J. Fluid Mech.
255
,
373
409
(
1993
).
19.
J. A.
Nicolás
,
D.
Rivas
, and
J. M.
Vega
, “
On the steady streaming flow due to high-frequency vibration in nearly inviscid liquid bridges
,”
J. Fluid Mech.
354
,
147
174
(
1998
).
20.
E.
Bansch
,
C. P.
Berg
, and
A.
Ohlhoff
, “
Uniaxial extensional flows in liquid bridges
,”
J. Fluid Mech.
521
,
353
379
(
2004
).
21.
J.
Eggers
, “
Nonlinear dynamics and breakup of free-surface flows
,”
Rev. Mod. Phys.
69
,
865
929
(
1997
).
22.
M. A.
Herrada
,
J. M.
Montanero
, and
J. M.
Vega
, “
The effect of surface shear viscosity on the damping of oscillations in millimetric liquid bridges
,”
Phys. Fluids
23
,
082102
(
2011
).
23.
M. R.
Khorrami
,
M. R.
Malik
, and
R. L.
Ash
, “
Application of spectral collocation techniques to the stability of swirling flows
,”
J. Comput. Phys.
81
,
206
229
(
1989
).
24.
E. J.
Vega
and
J. M.
Montanero
, “
Damping of linear oscillations in axisymmetric liquid bridges
,”
Phys. Fluids
21
,
092101
(
2009
).
25.
J. M.
Montanero
, “
Linear dynamics of axisymmetric liquid bridges
,”
Eur. J. Mech. B: Fluids
22
,
167
178
(
2003
).
26.
A.
Sanz
and
J. Lopez
Díez
, “
Non-axisymmetric oscillations of liquid bridges
,”
J. Fluid Mech.
205
,
503
521
(
1989
).
27.
J. M.
Montanero
and
C.
Ferrera
, “
A simple model to describe the lateral oscillations of axisymmetric liquid bridges
,”
Phys. Fluids
20
,
022103
(
2008
).
28.
L. A.
Slobozhanin
and
J. I. D.
Alexander
, “
Stability of an isorotating liquid bridge in an axial gravity field
,”
Phys. Fluids
9
,
1880
1892
(
1997
).
29.
L. A.
Slobozhanin
and
J. M.
Perales
, “
Stability of liquid bridges between equal disks in an axial gravity field
,”
Phys. Fluids
5
,
1305
1314
(
1993
).
30.
L.
Rayleigh
, “
On the instability of jets
,”
Proc. London Math. Soc.
10
,
4
13
(
1879
).
You do not currently have access to this content.