Long-wavelength, small-amplitude disturbances on the surface of a fluid layer subject to a normal electric field are considered. In our model, a dielectric medium lies above a layer of perfectly conducting fluid, and the electric field is produced by parallel plate electrodes. The Reynolds number of the fluid flow is taken to be large, with viscous effects restricted to a thin boundary layer on the lower plate. The effects of surface tension and electric field enter the governing equation through an inverse Bond number and an electrical Weber number, respectively. The thickness of the lower fluid layer is assumed to be much smaller than the disturbance wavelength, and a unified analysis is presented allowing for the full range of scalings for the thickness of the upper dielectric medium. A variety of different forms of modified Korteweg-de Vries equation are derived, involving Hilbert transforms, convolution terms, higher order spatial derivatives, and fractional derivatives. Critical values are identified for the inverse Bond number and electrical Weber number at which the qualitative nature of the disturbances changes.

1.
R.
Craster
and
O.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
1198
(
2009
).
2.
E. M.
Griffing
,
S. G.
Bankoff
,
M. J.
Miksis
, and
R. A.
Schluter
, “
Electrohydrodynamics of thin flowing films
,”
J. Fluids Eng.
128
,
276
283
(
2006
).
3.
J. K.
Hunter
and
J. M.
Vanden-Broeck
, “
Solitary and periodic gravity capillary waves of finite-amplitude
,”
J. Fluid Mech.
134
,
205
219
(
1983
).
4.
P.
Hammerton
and
A. P.
Bassom
, “
The effect of surface stress on interfacial solitary wave propagation
,”
Q. J. Mech. Appl. Math.
66
,
395
416
(
2013
).
5.
D. T.
Papageorgiou
,
P. G.
Petropoulos
, and
J. M.
Vanden-Broeck
, “
Gravity capillary waves in fluid layers under normal electric fields
,”
Phys. Rev. E
72
,
051601
(
2005
).
6.
H.
Gleeson
,
P.
Hammerton
,
D. T.
Papageorgiou
, and
J. M.
Vanden-Broeck
, “
A new application of the Korteweg-de Vries Benjamin-Ono equation in interfacial electrohydrodynamics
,”
Phys. Fluids
19
,
031703
(
2007
).
7.
C. V.
Easwaran
, “
Solitary waves on a conducting fluid layer
,”
Phys. Fluids
31
,
3442
3443
(
1988
).
8.
A.
Gonzalez
and
A.
Castellanos
, “
Korteweg-deVries-Burgers equation for surface-waves in nonideal conducting liquids
,”
Phys. Rev. E
49
,
2935
2940
(
1994
).
9.
A.
Gonzalez
and
A.
Castellanos
, “
Nonlinear waves in a viscous horizontal film in the presence of an electric field
,”
J. Electrost.
40
,
55
60
(
1997
).
10.
A.
Castellanos
and
A.
Gonzalez
, “
Nonlinear electrohydrodynamics of free surfaces
,”
IEEE Trans. Dielectr. Electr. Insul.
5
,
334
343
(
1998
).
11.
P.
Hammerton
, “
Existence of solitary travelling waves in interfacial electrohydrodynamics
,”
Wave Motion
50
,
676
686
(
2013
).
12.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1964
).
13.
B.
Fornberg
,
A Practical Guide to Pseudospectral Methods
(
Cambridge University Press
,
Cambridge
,
1999
).
14.
J. L.
Hammack
and
H.
Segur
, “
The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments
,”
J. Fluid Mech.
65
,
289
314
(
1974
).
15.
E.
Falcon
,
C.
Laroche
, and
S.
Fauve
, “
Observation of depression solitary surface waves on a thin fluid layer
,”
Phys. Rev. Lett.
89
,
204501
(
2002
).
You do not currently have access to this content.