Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI2 solution (5% concentration by mass) with a spatial and temporal resolution of 12 μm and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI2 concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal resolution.

1.
C.
Rodriguez-Navarro
and
E.
Doehne
, “
Salt weathering: Influence of evaporation rate, supersaturation and crystallization pattern
,”
Earth Surf. Process. Landforms
24
,
191
209
(
1999
).
2.
G. W.
Scherer
, “
Stress from crystallization of salt
,”
Cem. Concr. Res.
34
,
1613
1624
(
2004
).
3.
M.
Norouzi rad
and
N.
Shokri
, “
Nonlinear effects of salt concentrations on evaporation from porous media
,”
Geophys. Res. Lett.
39
,
L04403
, doi: (
2012
).
4.
R. M.
Espinosa-Marzal
and
G. W.
Scherer
, “
Impact of in-pore salt crystallization on transport properties
,”
Environ. Earth Sci.
69
(
8
),
2657
2669
(
2013
).
5.
Y.
Peysson
, “
Permeability alteration induced by drying of brines in porous media
,”
Eur. Phys. J.-Appl. Phys.
60
,
24206
(
2012
).
6.
N.
Shahidzadeh-Bonn
,
S.
Rafaï
,
D.
Bonn
, and
G.
Wegdam
, “
Salt crystallization during evaporation: Impact of interfacial properties
,”
Langmuir
24
,
8599
8605
(
2008
).
7.
N.
Shahidzadeh-Bonn
,
J.
Desarnaud
,
F.
Bertrand
,
X.
Chateau
, and
D.
Bonn
, “
Damage in porous media due to salt crystallization
,”
Phys. Rev. E
81
,
066110
(
2010
).
8.
N.
Shokri
and
D.
Or
, “
What determines drying rates at the onset of diffusion controlledstage-2 evaporation from porous media?
,”
Water Resour. Res.
47
,
W09513
, doi: (
2011
).
9.
P.
Lehmann
,
S.
Assouline
, and
D.
Or
, “
Characteristic lengths affecting evaporative drying of porous media
,”
Phys. Rev. E
77
,
056309
(
2008
).
10.
E.
Shahraeeni
and
D.
Or
, “
Quantification of subsurface thermal regimes beneath evaporating porous surfaces
,”
Int. J. Heat Mass Transfer
54
,
4193
4202
(
2011
).
11.
K. M.
Smits
,
V. V.
Ngo
,
A.
Cihan
,
T.
Sakaki
, and
T. H.
Illangasekare
, “
An evaluation of models of bare soil evaporation formulated with different land surface boundary conditions and assumptions
,”
Water Resour. Res.
48
,
W12526
, doi: (
2012
).
12.
N.
Sghaier
,
M.
Prat
, and
S.
Ben Nasrallah
, “
On ions transport during drying in a porous medium
,”
Transp. Porous Med.
67
,
243
274
(
2007
).
13.
G. W.
Scherer
, “
Theory of drying
,”
J. Am. Ceram. Soc.
73
,
3
14
(
1990
).
14.
N.
Shokri
,
P.
Lehmann
, and
D.
Or
, “
Critical evaluation of enhancement factors for vapor transport through unsaturated porous media
,”
Water Resour. Res.
45
,
W10433
, doi: (
2009
).
15.
H. P.
Huinink
,
L.
Pel
, and
M. A. J.
Michels
, “
How ions distribute in a drying porous medium: A simple model
,”
Phys. Fluids
14
,
1389
1395
(
2002
).
16.
N.
Sghaier
and
M.
Prat
, “
Effect of efflorescence formation on drying kinetics of porous media
,”
Transp. Porous Med.
80
,
441
454
(
2009
).
17.
L.
Guglielmini
,
A.
Gontcharov
,
A. J.
Aldykiewicz
 Jr.
, and
H. A.
Stone
, “
Drying of salt solutions in porous materials: Intermediate-time dynamics and efflorescence
,”
Phys. Fluids
20
,
077101
(
2008
).
18.
S.
Veran-Tissoires
,
M.
Marcoux
, and
M.
Prat
, “
Salt crystallisation at the surface of a heterogeneous porous medium
,”
Europhys. Lett.
98
,
34005
(
2012
).
19.
A. G.
Yiotis
,
A. G.
Boudouvis
,
A. K.
Stubos
,
I. N.
Tsimpanogiannis
, and
Y. C.
Yortsos
, “
The effect of liquid films on the drying of porous media
,”
AIChE J.
50
,
2721
2737
(
2004
).
20.
A. G.
Yiotis
,
D.
Salin
,
E. S.
Tajer
, and
Y. C.
Yortsos
, “
Drying in porous media with gravity-stabilized fronts: Experimental results
,”
Phys. Rev. E
85
,
046308
(
2012
).
21.
E.
Haghighi
,
E.
Shahraeeni
,
P.
Lehmann
, and
D.
Or
, “
Evaporation rates across a convective air boundary layer are dominated by diffusion
,”
Water Resour. Res.
49
,
1602
1610
, doi: (
2013
).
22.
E.
Keita
,
P.
Faure
,
S.
Rodts
, and
P.
Coussot
, “
MRI evidence for a receding-front effect in drying porous media
,”
Phys. Rev. E
87
,
062303
(
2013
).
23.
N.
Shokri
and
G.
Salvucci
, “
Evaporation from porous media in the presence of a water table
,”
Vadose Zone J.
10
,
1309
1318
(
2011
).
24.
P.
Deol
,
J.
Heitman
,
A.
Amoozegar
,
T.
Ren
, and
R.
Horton
, “
Quantifying nonisothermal subsurface soil water evaporation
,”
Water Resour. Res.
48
,
W11503
, doi: (
2012
).
25.
E.
Shahraeeni
and
D.
Or
, “
Pore-scale analysis of evaporation and condensation dynamics in porous media
,”
Langmuir
26
,
13924
13936
(
2010
).
26.
N.
Shokri
and
D.
Or
, “
Drying patterns of porous media containing wettability contrasts
,”
J. Colloid Interface Sci.
391
,
135
141
(
2013
).
27.
U.
Nachshon
,
N.
Weisbrod
,
M. I.
Dragila
, and
A.
Grader
, “
Combined evaporation and salt precipitation in homogeneous and heterogeneous porous media
,”
Water Resour. Res.
47
,
W03513
, doi: (
2011
).
28.
H.
Eloukabi
,
N.
Sghaier
,
M.
Prat
, and
S.
Ben Nassrallah
, “
Drying experiments in a hydrophobic model porous medium in the presence of a dissolved salt
,”
Chem. Eng. Technol.
34
,
1085
1094
(
2011
).
29.
N.
Shokri
,
P.
Lehmann
, and
D.
Or
, “
Liquid-phase continuity and solute concentration dynamics during evaporation from porous media: Pore-scale processes near vaporization surface
,”
Phys. Rev. E.
81
,
046308
(
2010
).
30.
D.
Wildenschild
,
J. W.
Hopmans
,
C. M. P.
Vaz
,
M. L.
Rivers
,
D.
Rikard
, and
B. S. B.
Christensen
, “
Using X-ray computed tomography in hydrology: Systems, resolutions, and limitations
,”
J. Hydrol.
267
,
285
297
(
2002
).
31.
G.
Schnaar
and
M. L.
Brusseau
, “
Characterizing pore-scale configuration of organic immiscible liquid in multiphase systems with synchrotron X-ray microtomography
,”
Vadose Zone J.
5
,
641
648
(
2006
).
32.
J. F.
Gaillard
,
C.
Chen
,
S. H.
Stonedahl
,
B. L. T.
Lau
,
D. T.
Keane
, and
A. I.
Packman
, “
Imaging of colloidal deposits in granular porous media by X-ray difference micro-tomography
,”
Geophys. Res. Lett.
34
,
L18404
, doi: (
2007
).
33.
N.
Shokri
,
P.
Lehmann
, and
D.
Or
, “
Evaporation from layered porous media
,”
J. Geophys. Res.
115
,
B06204
, doi: (
2010
).
34.
A.
Raoof
and
S. M.
Hassanizadeh
, “
Saturation-dependent solute dispersivity in porous media: Pore-scale processes
,”
Water Resour. Res.
49
,
1943
1951
, doi: (
2013
).
35.
C.
Buffone
and
K.
Sefiane
, “
Investigation of thermocapillary convectionin pores and its role in heat and mass transfer enhancement
,”
Int. J. Multiphase Flow
30
,
1071
1091
(
2004
).
36.
L.
Pel
,
H.
Huinink
, and
K.
Kopinga
, “
Ion transport and crystallization in inorganic building materials as studied by nuclear magnetic resonance
,”
Appl. Phys. Lett.
81
,
2893
2895
(
2002
).
37.
M.
Sahimi
,
Flow and Transport in Porous Media and Fractured Rock
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2011
).
38.
M.
Flury
and
T.
Gimmi
, “
Solute diffusion
,” in
Methods of Soil Analysis
, Part 4, Physical Methods, edited by
J. H.
Dane
, and
G. C.
Topp
(
Soil Science Society of America
,
Madison, WI
,
2002
), pp.
1323
1351
.
You do not currently have access to this content.