Droplet deformation is the first stage of all aerodynamically induced-breakups, considerably affecting the characteristics of the atomization. In the present study, using an adaptive volume of fluid method, two and three-dimensional direct numerical simulations have been performed to understand droplet deformation. A high Reynolds number and a range of relatively high Weber numbers are chosen, addressing the shear breakup of droplets in a stream. The study is focused on the initiation and growth of instabilities over the droplet. The role of Kelvin-Helmholtz and Rayleigh-Taylor instabilities in wave formation and azimuthal transverse modulation are shown and the obtained results for the most amplified wave-numbers are compared with instability theories for zero and non-zero vorticity layers. The present results for the most amplified wave-numbers and deformation topologies are in good agreement with the previous experimental results.

1.
L. P.
Hsiang
and
G. M.
Faeth
, “
Drop properties after secondary breakup
,”
Int. J. Multiphase Flow
19
(
5
),
721
735
(
1993
).
2.
L. P.
Hsiang
and
G. M.
Faeth
, “
Drop deformation and breakup due to shock wave and steady disturbances
,”
Int. J. Multiphase Flow
21
(
4
),
545
560
(
1995
).
3.
C. H.
Lee
and
R. D.
Reitz
, “
An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in highs peed gas stream
,”
Int. J. Multiphase Flow
26
,
229
244
(
2000
).
4.
C. S.
Lee
and
R. D.
Reitz
, “
Effect of liquid properties on the breakup mechanism of high-speed liquid drops
,”
Atomization Sprays
11
,
1
19
(
2001
).
5.
H.
Zhao
,
H. F.
Liu
,
W. F.
Li
, and
J. L.
Xu
, “
Morphological classification of low viscosity drop bag breakup in a continuous air jet stream
,”
Phys. Fluids
22
,
114103
(
2010
).
6.
E.
Villermaux
and
B.
Bossa
, “
Single-drop fragmentation determines size distribution of raindrops
,”
Nat. Phys.
5
,
697
702
(
2009
).
7.
D. R.
Guildenbecher
,
C.
López-Rivera
, and
P. E.
Sojka
, “
Secondary atomization
,”
Exp. Fluids
46
(
3
),
371
402
(
2009
).
8.
S.
Quan
and
D. P.
Schmidt
, “
Direct numerical study of a liquid droplet impulsively accelerated by gaseous flow
,”
Phys. Fluids
18
,
102103
(
2006
).
9.
B. T.
Helenbrook
and
C. F.
Edwards
, “
Quasi-steady deformation and drag of uncontaminated liquid drops
,”
Int. J. Multiphase Flow
28
,
1631
1657
(
2002
).
10.
A. R.
Wadhwa
,
V.
Magi
, and
J.
Abraham
, “
Transient deformation and drag of decelerating drops in axisymmetric flows
,”
Phys. Fluids
19
,
113301
(
2007
).
11.
J. Q.
Feng
, “
A deformable liquid drop falling through a quiescent gas at terminal velocity
,”
J. Fluid Mech.
658
,
438
462
(
2010
).
12.
S.
Khosla
,
C. E.
Smith
, and
R. P.
Throckmorton
, “
Detailed understanding of drop atomization by gas cross flow using the volume of fluid method
,” in
Proceedings of ILASS-AMERICAS 2006
,
Toronto, Canada
,
2006
.
13.
J. B.
Bell
,
P.
Colella
, and
H. M.
Glaz
, “
A second-order projection method for the incompressible Navier–Stokes equations
,”
J. Comput. Phys.
85
,
257
283
(
1989
).
14.
S.
Popinet
, “
Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries
,”
J. Comput. Phys.
190
(
2
),
572
600
(
2003
).
15.
S.
Popinet
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
,
5838
5866
(
2009
).
16.
J.
Han
and
G.
Tryggvason
, “
Secondary breakup of axisymmetric liquid drops. II. Impulsive acceleration
,”
Phys. Fluids
13
,
1554
(
2001
).
17.
M.
Ohta
,
S.
Yamaguchi
,
Y.
Yoshida
, and
M.
Sussman
, “
The sensitivity of drop motion due to the density and viscosity ratio
,”
Phys. Fluids
22
,
072102
(
2010
).
18.
R. D.
Cohen
, “
Effect of viscosity on drop breakup
,”
Int. J. Multiphase Flow
20
(
1
),
211
216
(
1994
).
19.
P.
Marmottant
and
E.
Villermaux
, “
On spray formation
,”
J. Fluid Mech.
498
,
73
111
(
2004
).
20.
B. M.
Summer
and
J.
Fredsøe
,
Hydrodynamics around Cylindrical Structures
,
Advanced Series on Ocean Engineering
Vol.
26
(
World Scientific Publishing
,
London
,
2006
).
21.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Oxford University Press
,
London
,
1961
).
22.
E.
Villermaux
, “
On the role of viscosity in shear instabilities
,”
Phys. Fluids
10
,
368
373
(
1998
).
23.
D.
Kim
,
M.
Desjardins
,
M.
Hermann
, and
P.
Moin
, “
Toward two-phase simulation of the primary breakup of a round liquid jet by a coaxial flow of gas
,”
Annual Research Briefs
(
Center for Turbulence Research
,
2006
).
24.
P.
Dimotakis
, “
Two-dimensional shear layer entrainment
,”
AIAA J.
24
,
1791
1796
(
1986
).
25.
E.
Villermaux
and
C.
Clanet
, “
Life of a flapping liquid sheet
,”
J. Fluid Mech.
462
,
341
363
(
2002
).
26.
E.
Villermaux
and
H.
Rehab
, “
Mixing in coaxial jets
,”
J. Fluid Mech.
425
,
161
185
(
2000
).
27.
A.
Prosperetti
, “
Motion of two superposed viscous fluids
,”
Phys. Fluids
24
(
7
),
1217
(
1981
).
28.
D.
Fuster
,
G.
Agbaglah
,
C.
Josserand
,
S.
Popinet
, and
S.
Zaleski
, “
Numerical simulation of droplets, bubbles and waves: State of the art
,”
Fluid Dyn. Res.
41
(
6
),
065001
(
2009
).
29.
J. B.
Keller
,
A.
King
, and
L.
Ting
, “
Blob formation
,”
Phys. Fluids
7
,
226
(
1995
).
30.
Lord
Rayleigh
, “
On the instability of a cylinder of viscous liquid under capillary force
,”
Philos. Mag.
34
(
207
),
145
154
(
1892
).
31.
C.
Weber
, “
Disintegration of liquid jets
,”
Z. Angew. Math. Mech.
11
(
2
),
136
159
(
1931
).
32.
M.
Jalaal
and
K.
Mehravaran
,
Breakup of a Liquid Drop Falling Through a Quiescent Media: A DNS Study
(
Bulletin of the American Physical Society
,
2011
), p.
56
.
33.
M.
Jalaal
and
K.
Mehravaran
, “
Fragmentation of falling liquid droplets in bag breakup mode
,”
Int. J. Multiphase Flow
47
,
115
132
(
2012
).
34.
S.
Quan
and
D. P.
Schmidt
, “
A moving mesh interface tracking method for 3D incompressible two-phase flows
,”
J. Comput. Phys.
221
(
2
),
761
780
(
2007
).
35.
H.
Lamb
,
Hydrodynamics
(
Cambridge University Press
,
London
,
1932
).
36.
E. K.
Poon
,
S.
Quan
,
J.
Lou
,
M.
Giacobello
, and
A. S.
Ooi
, “
Dynamics of a deformable, transversely rotating droplet released into a uniform flow
,”
J. Fluid Mech.
684
,
227
(
2011
).
37.
S.
Temkin
and
H. K.
Mehta
, “
Droplet drag in an accelerating and decelerating flow
,”
J. Fluid Mech.
116
(
1
),
297
313
(
1982
).
38.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops and Particles
(
Dover Publications
,
Mineola
,
1978
).
You do not currently have access to this content.