The dynamics of dual vortex ring flows is studied experimentally and numerically in a model system that consists of a piston-cylinder apparatus. The flows are generated by double identical strokes which have the velocity profile characterized by the sinusoidal function of half the period. By calculating the total wake impulse in two strokes in the experiments, it is found that the average propulsive force increases by 50% in the second stroke for the sufficiently small stroke length, compared with the first stroke. In the numerical simulations, two types of transient force augmentation are revealed, there being the transient force augmentation for the small stroke lengths and the absolute transient force augmentation for the large stroke lengths. The relative transient force augmentation increases to 78% for L/D = 1, while the absolute transient force augmentation for L/D = 4 is twice as much as that for L/D = 1. Further investigation demonstrates that the force augmentation is attributed to the interaction between vortex rings, which induces transport of vortex impulse and more evident fluid entrainment. The critical situation of vortex ring separation is defined and indicated, with vortex spacing falling in a narrow gap when the stroke lengths vary. A new model is proposed concerning the limiting process of impulse, further suggesting that apart from vortex formation timescale, vortex spacing should be interpreted as an independent timescale to reflect the dynamics of vortex interaction.

1.
C. P.
Ellington
,
C.
van den Berg
,
A. P.
Willmott
, and
A. L. R.
Thomas
, “
Leading-edge vortices in insect flight
,”
Nature (London)
384
,
626
630
(
1996
).
2.
M. H.
Dickinson
,
C. T.
Farley
,
R. J.
Full
,
M. A. R.
Koehl
,
R.
Kram
, and
S.
Lehman
, “
How animals move: An integrative view
,”
Science
288
,
100
106
(
2000
).
3.
J. C.
Liao
, “
A review of fish swimming mechanics and behaviour in altered flows
,”
Philos. Trans. R. Soc. B
362
,
1973
1993
(
2007
).
4.
M. H.
Dickinson
,
F.-O.
Lehmann
, and
S. P.
Sane
, “
Wing rotation and the aerodynamic basis of insect flight
,”
Science
284
,
1954
1960
(
1999
).
5.
J. C.
Liao
,
D. N.
Beal
,
G. V.
Lauder
, and
M. S.
Triantafyllou
, “
Fish exploiting vortices decrease muscle activity
,”
Science
302
,
1566
1569
(
2003
).
6.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1967
).
7.
T.
Maxworthy
, “
Some experimental studies of vortex rings
,”
J. Fluid Mech.
81
,
465
495
(
1977
).
8.
M.
Gharib
,
E.
Rambod
, and
K.
Shariff
, “
A universal time scale for vortex ring formation
,”
J. Fluid Mech.
360
,
121
140
(
1998
).
9.
P. S.
Krueger
and
M.
Gharib
, “
The significance of vortex ring formation to the impulse and thrust of a starting jet
,”
Phys. Fluids
15
,
1271
1281
(
2003
).
10.
J. O.
Dabiri
, “
Optimal vortex formation as a unifying principle in biological propulsion
,”
Annu. Rev. Fluid Mech.
41
,
17
33
(
2009
).
11.
W. J.
Stewart
,
I. K.
Bartol
, and
P. S.
Krueger
, “
Hydrodynamic fin function of brief squid, Lolliguncula brevis
,”
J. Exp. Biol.
213
,
2009
2024
(
2010
).
12.
M. D.
Ford
,
J. H.
Costello
,
K. B.
Heidelberg
, and
J. E.
Purcell
, “
Swimming and feeding by the scyphomedusa Chrysaora quinquecirrha
,”
Marine Biol.
129
,
355
362
(
1997
).
13.
J. O.
Dabiri
,
S. P.
Colin
,
J. H.
Costello
, and
M.
Gharib
, “
Flow patterns generated by oblate medusan jellyfish–field measurements and laboratory analyses
,”
J. Exp. Biol.
208
,
1257
1265
(
2005
).
14.
J. J.
Allen
and
B.
Auvity
, “
Interaction of a vortex ring with a piston vortex
,”
J. Fluid Mech.
465
,
353
378
(
2002
).
15.
J. E.
Cater
,
J.
Soria
, and
T. T.
Lim
, “
The interaction of the piston vortex with a piston-generated vortex ring
,”
J. Fluid Mech.
499
,
327
343
(
2004
).
16.
D.
Weihs
, “
Periodic jet propulsion of aquatic creatures
,”
Forts. Zool.
24
,
171
175
(
1977
).
17.
P. S.
Krueger
and
M.
Gharib
, “
Thrust augmentation and vortex ring evolution in a fully pulsed jet
,”
AIAA J.
43
,
792
801
(
2005
).
18.
D. N.
Beal
,
F. S.
Hover
,
M. S.
Triantafyllou
,
J. C.
Liao
, and
G. V.
Lauder
, “
Passive propulsion in vortex wakes
,”
J. Fluid Mech.
549
,
385
402
(
2006
).
19.
X. X.
Wang
and
Z. N.
Wu
, “
Stroke-averaged lift forces due to vortex rings and their mutual interactions for a flapping flight model
,”
J. Fluid Mech.
654
,
453
472
(
2010
).
20.
B. E.
Flammang
,
G. V.
Lauder
,
D. R.
Troolin
, and
T.
Strand
, “
Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure
,”
Proc. R. Soc. B
278
,
3670
3678
(
2011
).
21.
P. G.
Saffman
,
Vortex Dynamics
(
Cambridge University Press
,
Cambridge
,
1992
).
22.
C.
Eloy
, “
Optimal Strouhal number for swimming animals
,”
J. Fluids Struct.
30
,
205
218
(
2012
).
23.
J. O.
Dabiri
and
M.
Gharib
, “
Fluid entrainment by isolated vortex rings
,”
J. Fluid Mech.
511
,
311
331
(
2004
).
24.
C.
Palacios-Morales
and
R.
Zenit
, “
Vortex ring formation for low Re numbers
,”
Acta Mech.
224
,
383
397
(
2013
).
25.
G.
Querzoli
,
M.
Falchi
, and
G. P.
Romano
, “
On the flow field generated by a gradually varying flow through an orifice
,”
Eur. J. Mech. B/Fluids
29
,
259
268
(
2010
).
26.
M.
Rosenfeld
,
E.
Rambod
, and
M.
Gharib
, “
Circulation and formation number of laminar vortex rings
,”
J. Fluid Mech.
376
,
297
318
(
1998
).
27.
K.
Katija
and
J. O.
Dabiri
, “
A viscosity-enhanced mechanism for biogenic ocean mixing
,”
Nature (London)
460
,
624
626
(
2009
).
28.
D. G.
Akhmetov
,
Vortex Rings
(
Springer
,
New York
,
2009
).
29.
J.
Peng
and
J. O.
Dabiri
, “
An overview of a lagrangian method for analysis of animal wake dynamics
,”
J. Exp. Biol.
211
,
280
287
(
2008
).
30.
T.
Maxworthy
, “
The structure and stability of vortex rings
,”
J. Fluid Mech.
51
,
15
32
(
1972
).
31.
M.
Hettel
,
F.
Wetzel
,
P.
Habisreuther
, and
H.
Bockhorn
, “
Numerical verification of the similarity laws for the formation of laminar vortex rings
,”
J. Fluid Mech.
590
,
35
60
(
2007
).
32.
L.
Kelvin
, “
Vortex statics
,”
Philos. Mag.
10
,
97
109
(
1880
).
33.
T. B.
Benjamin
,
The Alliance of Practical and Analytical Insights into the Nonlinear Problems of Fluid Mechanics
(
Springer
,
New York
,
1976
), pp.
8
28
.
You do not currently have access to this content.