The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo [“Zero-pressure-gradient turbulent boundary layer,” Appl. Mech. Rev.50, 689 (1997)]). Comparison of LES results for Reθ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.

1.
G. I.
Barenblatt
, “
Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis
,”
J. Fluid Mech.
248
,
513
520
(
1993
).
2.
G. I.
Barenblatt
, “
Characteristic length scale of the intermediate structure in zero-pressure-gradient boundary layer flow
,”
Proc. Natl. Acad. Sci. U.S.A.
97
,
3799
3802
(
2000
).
3.
W.
George
and
L.
Castillo
, “
Zero-pressure-gradient turbulent boundary layer
,”
Appl. Mech. Rev.
50
,
689
(
1997
).
4.
W.
George
, “
Recent advancements towards the understanding of turbulent boundary layer
,”
AIAA J.
44
,
2435
2449
(
2006
).
5.
M. V.
Zagarola
and
A. J.
Smits
, “
Mean-flow scaling of turbulent pipe flow
,”
J. Fluid Mech.
373
,
33
79
(
1998
).
6.
N.
Afzal
, “
Power law and log law velocity profiles in fully developed turbulent pipe flow: Equivalent relations at large Reynolds numbers
,”
Acta Mech.
151
,
171
183
(
2001
).
7.
B. J.
Mckeon
,
J.
Li
,
W.
Jiang
,
J. F.
Morrison
, and
A. J.
Smits
, “
Further observations on the mean velocity distribution in fully developed pipe flow
,”
J. Fluid Mech.
501
,
135
147
(
2004
).
8.
M.
Buschmann
and
M.
Gad-el-Hak
, “
Debate concerning the mean-velocity profile of a turbulent boundary layer
,”
AIAA J.
41
,
565
572
(
2003
).
9.
P.
Monkewitz
,
K. A.
Chauhan
, and
H.
Nagib
, “
Comparison of mean flow similarity laws in zero pressure gradient turbulent boundary layers
,”
Phys. Fluids
20
,
105102
(
2008
).
10.
I.
Marusic
,
B. J.
McKeon
,
P. A.
Monkewitz
,
H. M.
Nagib
, and
A. J.
Smits
, “
Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues
,”
Phys. Fluids
22
,
065103
(
2010
).
11.
M.
Hultmark
,
M.
Vallikivi
,
S.
Bailey
, and
A.
Smits
, “
Turbulent pipe flow at extreme reynolds numbers
,”
Phys. Rev. Lett.
108
,
094501
(
2012
).
12.
I.
Marusic
,
J. P.
Monty
,
M.
Hultmark
, and
A. J.
Smits
, “
On the logarithmic region in wall turbulence
,”
J. Fluid Mech.
716
,
R3
(
2013
).
13.
M.
Inoue
and
D. I.
Pullin
, “
Large-eddy simulation of the zero pressure gradient turbulent boundary layer up to Reθ = o(1012)
,”
J. Fluid Mech.
686
,
507
533
(
2011
).
14.
D.
Chung
and
D. I.
Pullin
, “
Large-eddy simulation and wall modelling of turbulent channel flow
,”
J. Fluid Mech.
631
,
281
309
(
2009
).
15.
K. A.
Chauhan
,
P. A.
Monkewitz
, and
H. M.
Nagib
, “
Criteria for assessing experiments in zero pressure gradient boundary layers
,”
Fluid Dyn. Res.
41
,
021404
(
2009
).
16.
M.
Wosnik
,
L.
Castillo
, and
W. K.
George
, “
A theory for turbulent pipe and channel flows
,”
J. Fluid Mech.
421
,
115
145
(
2000
).
17.
T. S.
Lund
,
X.
Wu
, and
K. D.
Squires
, “
Generation of turbulent inflow data for spatially developing boundary layer simulations
,”
J. Comput. Phys.
140
,
233
258
(
1998
).
18.
G.
Araya
,
K. E.
Jansen
, and
L.
Castillo
, “
Inlet condition generation for spatially developing turbulent boundary layer via multiscale similarity
,”
J. Turbul.
10
(
36
),
1
33
(
2009
).
19.
W.
Cheng
and
R.
Samtaney
, “
A high-resolution code for Large Eddy Simulation of incompressible turbulent boundary layer flows
,”
Comput. Fluids
92
,
82
92
(
2014
).
20.
H. M.
Nagib
,
K. A.
Chauhan
, and
P. A.
Monkewitz
, “
Approach to an asymptotic state for zero pressure gradient turbulent boundary layers
,”
Philos. Trans. R. Soc. A
365
,
755
770
(
2007
).
You do not currently have access to this content.