The effect of domain size on direct numerical simulations of turbulent channels with periodic boundary conditions is studied. New simulations are presented up to Reτ = 4179 in boxes with streamwise and spanwise sizes of 2πh × πh, where h is the channel half-height. It is found that this domain is large enough to reproduce the one-point statistics of larger boxes. A simulation in a box of size 60πh × 6πh is used to show that a contour of the two-dimensional premultiplied spectrum of the streamwise velocity containing 80% of the kinetic energy closes at λx ≈ 100h.

1.
J.
Jiménez
and
P.
Moin
, “
The minimal flow unit in near-wall turbulence
,”
J. Fluid Mech.
225
,
213
240
(
1991
).
2.
O.
Flores
and
J.
Jiménez
, “
Hierarchy of minimal flow units in the logarithmic layer
,”
Phys. Fluids
22
,
071704
(
2010
).
3.
S.
Hoyas
and
J.
Jiménez
, “
Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
4.
A.
Lozano-Durán
,
O.
Flores
, and
J.
Jiménez
, “
The three-dimensional structure of momentum transfer in turbulent channels
,”
J. Fluid Mech.
694
,
100
130
(
2012
).
5.
M.
Guala
,
S. E.
Hommema
, and
R. J.
Adrian
, “
Large-scale and very-large-scale motions in turbulent pipe flow
,”
J. Fluid Mech.
554
,
521
542
(
2006
).
6.
J.
Kim
,
P.
Moin
, and
R. D.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
7.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
42
(
1992
).
8.
P. R.
Spalart
,
R. D.
Moser
, and
M. M.
Rogers
, “
Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions
,”
J. Comput. Phys.
96
,
297
324
(
1991
).
9.
J.
Jiménez
, “
How linear is wall-bounded turbulence?
Phys. Fluids
25
,
110814
(
2013
).
10.
J. C.
del Álamo
and
J.
Jiménez
, “
Spectra of the very large anisotropic scales in turbulent channels
,”
Phys. Fluids
15
,
L41
L44
(
2003
).
11.
J. C.
del Álamo
,
J.
Jiménez
,
P.
Zandonade
, and
R. D.
Moser
, “
Scaling of the energy spectra of turbulent channels
,”
J. Fluid Mech.
500
,
135
144
(
2004
).
12.
M. P.
Schultz
and
K. A.
Flack
, “
Reynolds-number scaling of turbulent channel flow
,”
Phys. Fluids
25
,
025104
(
2013
).
13.
J.
Jiménez
,
A. A.
Wray
,
P. G.
Saffman
, and
R. S.
Rogallo
, “
The structure of intense vorticity in isotropic turbulence
,”
J. Fluid Mech.
255
,
65
90
(
1993
).
14.
J. C.
Klewicki
, “
Reynolds number dependence, scaling, and dynamics of turbulent boundary layers
,”
J. Fluids Eng.
132
,
094001
(
2010
).
15.
I.
Marusic
,
B. J.
McKeon
,
P. A.
Monkewitz
,
H. M.
Nagib
,
A. J.
Smits
, and
K. R.
Sreenivasan
, “
Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues
,”
Phys. Fluids
22
,
065103
(
2010
).
16.
A. J.
Smits
,
B. J.
McKeon
, and
I.
Marusic
, “
High-Reynolds number wall turbulence
,”
Annu. Rev. Fluid Mech.
43
,
353
375
(
2011
).
17.
J.
Jiménez
, “
Cascades in wall-bounded turbulence
,”
Annu. Rev. Fluid Mech.
44
,
27
45
(
2012
).
18.
S.
Hoyas
and
J.
Jiménez
, “
Reynolds number effects on the Reynolds-stress budgets in turbulent channels
,”
Phys. Fluids
20
,
101511
(
2008
).
19.
A. A.
Townsend
,
The Structure of Turbulent Shear Flows
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1976
).
20.
M. M.
Metzger
and
J. C.
Klewicki
, “
A comparative study of near-wall turbulence in high and low Reynolds number boundary layers
,”
Phys. Fluids
13
,
692
701
(
2001
).
21.
J.
Jiménez
and
S.
Hoyas
, “
Turbulent fluctuations above the buffer layer of wall-bounded flows
,”
J. Fluid Mech.
611
,
215
236
(
2008
).
22.
M.
Hultmark
,
M.
Vallikivi
,
S. C. C.
Bailey
, and
A. J.
Smits
, “
Turbulent pipe flow at extreme Reynolds numbers
,”
Phys. Rev. Lett.
108
,
094501
(
2012
).
23.
J. A.
Sillero
,
J.
Jiménez
, and
R. D.
Moser
, “
One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+ ≈ 2000
,”
Phys. Fluids
25
,
105102
(
2013
).
24.
A. A.
Townsend
, “
Equilibrium layers and wall turbulence
,”
J. Fluid Mech.
11
,
97
120
(
1961
).
25.
J.
Jiménez
,
S.
Hoyas
,
M. P.
Simens
, and
Y.
Mizuno
, “
Turbulent boundary layers and channels at moderate Reynolds numbers
,”
J. Fluid Mech.
657
,
335
360
(
2010
).
26.
I.
Marusic
,
J. P.
Monty
,
M.
Hultmark
, and
A. J.
Smits
, “
On the logarithmic region in wall turbulence
,”
J. Fluid Mech.
716
,
R3
(
2013
).
27.
J.
Jiménez
, “
The largest scales of turbulence
,” in
CTR Annual Research Briefs
(
Stanford University
,
1998
), pp.
137
154
.
28.
K.
Kim
and
R. J.
Adrian
, “
Very large-scale motion in the outer layer
,”
Phys. Fluids
11
,
417
422
(
1999
).
29.
I.
Marusic
, “
On the role of large-scale structures in wall turbulence
,”
Phys. Fluids
13
,
735
743
(
2001
).
30.
J.
Jiménez
,
J. C.
Del Álamo
, and
O.
Flores
, “
The large-scale dynamics of near-wall turbulence
,”
J. Fluid Mech.
505
,
179
199
(
2004
).
31.
J. P.
Monty
,
J. A.
Stewart
,
R. C.
Williams
, and
M. S.
Chong
, “
Large-scale features in turbulent pipe and channel flows
,”
J. Fluid Mech.
589
,
147
156
(
2007
).
32.
S. S.
Lu
and
W. W.
Willmarth
, “
Measurements of the structure of the Reynolds stress in a turbulent boundary layer
,”
J. Fluid Mech.
60
,
481
511
(
1973
).
33.
J. C.
del Álamo
,
J.
Jiménez
,
P.
Zandonade
, and
R. D.
Moser
, “
Self-similar vortex clusters in the turbulent logarithmic region
,”
J. Fluid Mech.
561
,
329
358
(
2006
).
You do not currently have access to this content.