The effect of domain size on direct numerical simulations of turbulent channels with periodic boundary conditions is studied. New simulations are presented up to Reτ = 4179 in boxes with streamwise and spanwise sizes of 2πh × πh, where h is the channel half-height. It is found that this domain is large enough to reproduce the one-point statistics of larger boxes. A simulation in a box of size 60πh × 6πh is used to show that a contour of the two-dimensional premultiplied spectrum of the streamwise velocity containing 80% of the kinetic energy closes at λx ≈ 100h.
REFERENCES
1.
J.
Jiménez
and P.
Moin
, “The minimal flow unit in near-wall turbulence
,” J. Fluid Mech.
225
, 213
–240
(1991
).2.
O.
Flores
and J.
Jiménez
, “Hierarchy of minimal flow units in the logarithmic layer
,” Phys. Fluids
22
, 071704
(2010
).3.
S.
Hoyas
and J.
Jiménez
, “Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,” Phys. Fluids
18
, 011702
(2006
).4.
A.
Lozano-Durán
, O.
Flores
, and J.
Jiménez
, “The three-dimensional structure of momentum transfer in turbulent channels
,” J. Fluid Mech.
694
, 100
–130
(2012
).5.
M.
Guala
, S. E.
Hommema
, and R. J.
Adrian
, “Large-scale and very-large-scale motions in turbulent pipe flow
,” J. Fluid Mech.
554
, 521
–542
(2006
).6.
J.
Kim
, P.
Moin
, and R. D.
Moser
, “Turbulence statistics in fully developed channel flow at low Reynolds number
,” J. Fluid Mech.
177
, 133
–166
(1987
).7.
S. K.
Lele
, “Compact finite difference schemes with spectral-like resolution
,” J. Comput. Phys.
103
, 16
–42
(1992
).8.
P. R.
Spalart
, R. D.
Moser
, and M. M.
Rogers
, “Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions
,” J. Comput. Phys.
96
, 297
–324
(1991
).9.
J.
Jiménez
, “How linear is wall-bounded turbulence?
” Phys. Fluids
25
, 110814
(2013
).10.
J. C.
del Álamo
and J.
Jiménez
, “Spectra of the very large anisotropic scales in turbulent channels
,” Phys. Fluids
15
, L41
–L44
(2003
).11.
J. C.
del Álamo
, J.
Jiménez
, P.
Zandonade
, and R. D.
Moser
, “Scaling of the energy spectra of turbulent channels
,” J. Fluid Mech.
500
, 135
–144
(2004
).12.
M. P.
Schultz
and K. A.
Flack
, “Reynolds-number scaling of turbulent channel flow
,” Phys. Fluids
25
, 025104
(2013
).13.
J.
Jiménez
, A. A.
Wray
, P. G.
Saffman
, and R. S.
Rogallo
, “The structure of intense vorticity in isotropic turbulence
,” J. Fluid Mech.
255
, 65
–90
(1993
).14.
J. C.
Klewicki
, “Reynolds number dependence, scaling, and dynamics of turbulent boundary layers
,” J. Fluids Eng.
132
, 094001
(2010
).15.
I.
Marusic
, B. J.
McKeon
, P. A.
Monkewitz
, H. M.
Nagib
, A. J.
Smits
, and K. R.
Sreenivasan
, “Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues
,” Phys. Fluids
22
, 065103
(2010
).16.
A. J.
Smits
, B. J.
McKeon
, and I.
Marusic
, “High-Reynolds number wall turbulence
,” Annu. Rev. Fluid Mech.
43
, 353
–375
(2011
).17.
J.
Jiménez
, “Cascades in wall-bounded turbulence
,” Annu. Rev. Fluid Mech.
44
, 27
–45
(2012
).18.
S.
Hoyas
and J.
Jiménez
, “Reynolds number effects on the Reynolds-stress budgets in turbulent channels
,” Phys. Fluids
20
, 101511
(2008
).19.
A. A.
Townsend
, The Structure of Turbulent Shear Flows
, 2nd ed. (Cambridge University Press
, Cambridge
, 1976
).20.
M. M.
Metzger
and J. C.
Klewicki
, “A comparative study of near-wall turbulence in high and low Reynolds number boundary layers
,” Phys. Fluids
13
, 692
–701
(2001
).21.
J.
Jiménez
and S.
Hoyas
, “Turbulent fluctuations above the buffer layer of wall-bounded flows
,” J. Fluid Mech.
611
, 215
–236
(2008
).22.
M.
Hultmark
, M.
Vallikivi
, S. C. C.
Bailey
, and A. J.
Smits
, “Turbulent pipe flow at extreme Reynolds numbers
,” Phys. Rev. Lett.
108
, 094501
(2012
).23.
J. A.
Sillero
, J.
Jiménez
, and R. D.
Moser
, “One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+ ≈ 2000
,” Phys. Fluids
25
, 105102
(2013
).24.
A. A.
Townsend
, “Equilibrium layers and wall turbulence
,” J. Fluid Mech.
11
, 97
–120
(1961
).25.
J.
Jiménez
, S.
Hoyas
, M. P.
Simens
, and Y.
Mizuno
, “Turbulent boundary layers and channels at moderate Reynolds numbers
,” J. Fluid Mech.
657
, 335
–360
(2010
).26.
I.
Marusic
, J. P.
Monty
, M.
Hultmark
, and A. J.
Smits
, “On the logarithmic region in wall turbulence
,” J. Fluid Mech.
716
, R3
(2013
).27.
J.
Jiménez
, “The largest scales of turbulence
,” in CTR Annual Research Briefs
(Stanford University
, 1998
), pp. 137
–154
.28.
K.
Kim
and R. J.
Adrian
, “Very large-scale motion in the outer layer
,” Phys. Fluids
11
, 417
–422
(1999
).29.
I.
Marusic
, “On the role of large-scale structures in wall turbulence
,” Phys. Fluids
13
, 735
–743
(2001
).30.
J.
Jiménez
, J. C.
Del Álamo
, and O.
Flores
, “The large-scale dynamics of near-wall turbulence
,” J. Fluid Mech.
505
, 179
–199
(2004
).31.
J. P.
Monty
, J. A.
Stewart
, R. C.
Williams
, and M. S.
Chong
, “Large-scale features in turbulent pipe and channel flows
,” J. Fluid Mech.
589
, 147
–156
(2007
).32.
S. S.
Lu
and W. W.
Willmarth
, “Measurements of the structure of the Reynolds stress in a turbulent boundary layer
,” J. Fluid Mech.
60
, 481
–511
(1973
).33.
J. C.
del Álamo
, J.
Jiménez
, P.
Zandonade
, and R. D.
Moser
, “Self-similar vortex clusters in the turbulent logarithmic region
,” J. Fluid Mech.
561
, 329
–358
(2006
).© 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.