When a falling jet of fluid strikes a horizontal fluid layer, a hydraulic jump arises downstream of the point of impact, provided a critical flow rate is exceeded. We here examine a phenomenon that arises below this jump threshold, a circular deflection of relatively small amplitude on the free surface that we call the hydraulic bump. The form of the circular bump can be simply understood in terms of the underlying vortex structure and its height simply deduced with Bernoulli arguments. As the incoming flux increases, a breaking of axial symmetry leads to polygonal hydraulic bumps. The relation between this polygonal instability and that arising in the hydraulic jump is discussed. The coexistence of hydraulic jumps and bumps can give rise to striking nested structures with polygonal jumps bound within polygonal bumps. The absence of a pronounced surface signature on the hydraulic bump indicates the dominant influence of the subsurface vorticity on its instability.

1.
J.
Bélanger
,
Notes sur l'hydraulique
(
École Royale des Ponts et Chaussées
,
1841
).
2.
Lord
Rayleigh
, “
On the theory of long waves and bores
,”
Proc. R. Soc. London, Ser. A
90
,
324
328
(
1914
).
3.
I.
Tani
, “
Water jump in the boundary layer
,”
J. Phys. Soc. Jpn.
4
,
212
215
(
1949
).
4.
E.
Watson
, “
The radial spread of a liquid jet over a horizontal plane
,”
J. Fluid Mech.
20
,
481
499
(
1964
).
5.
T.
Bohr
,
P.
Dimon
, and
V.
Putkaradze
, “
Shallow-water approach to the circular hydraulic jump
,”
J. Fluid Mech.
254
,
635
648
(
1993
).
6.
T.
Bohr
,
C.
Ellegaard
,
A. E.
Hansen
, and
A.
Haaning
, “
Hydraulic jumps, flow separation and wave breaking: An experimental study
,”
Physica B
228
,
1
10
(
1996
).
7.
T.
Bohr
,
V.
Putkaradze
, and
S.
Watanabe
, “
Averaging theory for the structure of hydraulic jumps and separation in laminar free-surface flows
,”
Phys. Rev. Lett.
79
,
1038
1041
(
1997
).
8.
J. W. M.
Bush
and
J. M.
Aristoff
, “
The influence of surface tension on the circular hydraulic jump
,”
J. Fluid Mech.
489
,
229
238
(
2003
).
9.
A. R.
Kasimov
, “
A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue
,”
J. Fluid Mech.
601
,
189
198
(
2008
).
10.
S.
Watanabe
,
V.
Putkaradze
, and
T.
Bohr
, “
Integral methods for shallow free-surface flows with separation
,”
J. Fluid Mech.
480
,
233
265
(
2003
).
11.
A.
Andersen
,
T.
Bohr
, and
T.
Schnipper
, “
Separation vortices and pattern formation
,”
Theor. Comput. Fluid Dyn.
24
,
329
334
(
2009
).
12.
K.
Yokoi
and
F.
Xiao
, “
Mechanism of structure formation in circular hydraulic jumps: Numerical studies of strongly deformed free-surface shallow flows
,”
Physica D
161
,
202
219
(
2002
).
13.
X.
Liu
and
J. H.
Lienhard
 V
, “
The hydraulic jump in circular jet impingement and in other thin liquid films
,”
Exp. Fluids
15
,
108
116
(
1993
).
14.
J. W. M.
Bush
,
J. M.
Aristoff
, and
A. E.
Hosoi
, “
An experimental investigation of the stability of the circular hydraulic jump
,”
J. Fluid Mech.
558
,
33
52
(
2006
).
15.
C.
Ellegaard
,
A.
Hansen
,
A.
Haaning
,
K.
Hansen
,
A.
Marcussen
,
T.
Bohr
,
J.
Hansen
, and
S.
Watanabe
, “
Creating corners in kitchen sinks
,”
Nature (London)
392
,
767
768
(
1998
).
16.
C.
Ellegaard
,
A. E.
Hansen
,
A.
Haaning
,
K.
Hansen
,
A.
Marcussen
,
T.
Bohr
,
J. L.
Hansen
, and
S.
Watanabe
, “
Cover illustration: Polygonal hydraulic jumps
,”
Nonlinearity
12
,
1
7
(
1999
).
17.
E.
Martens
,
S.
Watanabe
, and
T.
Bohr
, “
Model for polygonal hydraulic jumps
,”
Phys. Rev. E
85
,
036316
(
2012
).
18.
J.
Plateau
,
Experimental and Theoretical Statics of Liquids Subject to Molecular Forces Only
(
Gauthier-Villars
,
Paris
,
1873
), Vol.
1
.
19.
Lord
Rayleigh
, “
On the instability of jets
,”
Proc. London Math. Soc.
10
,
4
13
(
1878
).
20.
L. M.
Hocking
and
D. H.
Michael
, “
The stability of a column of rotating liquid
,”
Mathematika
6
,
25
32
(
1959
).
21.
T. J.
Pedley
, “
The stability of rotating flows with a cylindrical free surface
,”
J. Fluid Mech.
30
,
127
147
(
1967
).
22.
J.
Kubitschek
and
P.
Weidman
, “
The effect of viscosity on the stability of a uniformly rotating liquid column in zero gravity
,”
J. Fluid Mech.
572
,
261
286
(
2007
).
23.
Sir W.
Thomson
, “
On vortex atoms
,”
Philos. Mag.
34
,
15
24
(
1867
).
24.
J. J.
Thomson
,
A Treatise on the Motion of Vortex Ring
(
Macmillan
,
London
,
1883
).
25.
S. E.
Widnall
and
C. Y.
Tsai
, “
The instability of the thin vortex ring of constant vorticity
,”
Philos. Trans. R. Soc. London, Ser. A
287
,
273
305
(
1977
).
26.
T.
Maxworthy
, “
Some experimental studies of vortex rings
,”
J. Fluid Mech.
81
,
465
495
(
1977
).
27.
P.
Saffman
, “
The number of waves on unstable vortex rings
,”
J. Fluid Mech.
84
,
625
639
(
1978
).
28.
O. M.
Knio
and
A. F.
Ghoniem
, “
Numerical study of a three-dimensional vortex method
,”
J. Comput. Phys.
86
,
75
106
(
1990
).
29.
S.
Perrard
,
Y.
Couder
,
E.
Fort
, and
L.
Limat
, “
Leidenfrost levitated liquid tori
,”
Europhys. Lett.
100
,
54006
(
2012
).
30.
A. K.
Biń
, “
Gas entrainment by plunging liquid jets
,”
Chem. Eng. Sci.
48
,
3585
3630
(
1993
).
31.
E.
Lorenceau
,
D.
Quéré
, and
J.
Eggers
, “
Air entrainment by a viscous jet plunging into a bath
,”
Phys. Rev. Lett.
93
,
254501
(
2004
).
You do not currently have access to this content.