A solid-liquid-gas moving contact line is considered through a diffuse-interface model with the classical boundary condition of no-slip at the solid surface. Examination of the asymptotic behaviour as the contact line is approached shows that the relaxation of the classical model of a sharp liquid-gas interface, whilst retaining the no-slip condition, resolves the stress, and pressure singularities associated with the moving contact line problem while the fluid velocity is well defined (not multi-valued). The moving contact line behaviour is analysed for a general problem relevant for any density dependent dynamic viscosity and volume viscosity, and for general microscopic contact angle and double well free-energy forms. Away from the contact line, analysis of the diffuse-interface model shows that the Navier–Stokes equations and classical interfacial boundary conditions are obtained at leading order in the sharp-interface limit, justifying the creeping flow problem imposed in an intermediate region in the seminal work of Seppecher [Int. J. Eng. Sci.34, 977992 (1996)]. Corrections to Seppecher's work are given, as an incorrect solution form was originally used.

1.
E. B.
Dussan V
, “
On the spreading of liquids on solid surfaces: Static and dynamic contact lines
,”
Annu. Rev. Fluid Mech.
11
,
371
400
(
1979
).
2.
P. G.
de Gennes
, “
Wetting: statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
863
(
1985
).
3.
T.
Blake
, “
The physics of moving wetting lines
,”
J. Colloid Interface Sci.
299
,
1
13
(
2006
).
4.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
805
(
2009
).
5.
E. B.
Dussan V
and
S. H.
Davis
, “
On the motion of a fluid-fluid interface along a solid surface
,”
J. Fluid Mech.
65
,
71
95
(
1974
).
6.
Y. D.
Shikhmurzaev
, “
Singularities at the moving contact line. Mathematical, physical and computational aspects
,”
Physica D
217
,
121
133
(
2006
).
7.
C.
Huh
and
L. E.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
,
85
101
(
1971
).
8.
C.-L.
Navier
, “
Mémoire sur les lois du mouvement des fluides
,”
Mem. Acad. Sci. Inst. Fr.
6
,
389
440
(
1823
).
9.
N.
Savva
and
S.
Kalliadasis
, “
Dynamics of moving contact lines: A comparison between slip and precursor film models
,”
Europhys. Lett.
94
,
64004
(
2011
).
10.
D. M.
Anderson
,
G. B.
McFadden
, and
A. A.
Wheeler
, “
Diffuse-interface methods in fluid mechanics
,”
Annu. Rev. Fluid Mech.
30
,
139
165
(
1998
).
11.
P.
Seppecher
, “
Moving contact lines in the Cahn-Hilliard theory
,”
Int. J. Eng. Sci.
34
,
977
992
(
1996
).
12.
D.
Jacqmin
, “
Contact-line dynamics of a diffuse fluid interface
,”
J. Fluid Mech.
402
,
57
88
(
2000
).
13.
A.
Briant
, “
Lattice Boltzmann simulations of contact line motion in a liquid-gas system
,”
Philos. Trans. R. Soc. A
360
,
485
495
(
2002
).
14.
A. J.
Briant
,
A. J.
Wagner
, and
J. M.
Yeomans
, “
Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems
,”
Phys. Rev. E
69
,
031602
(
2004
).
15.
D.
Jasnow
and
J.
Viñals
, “
Coarse-grained description of thermo-capillary flow
,”
Phys. Fluids
8
,
660
669
(
1996
).
16.
V. V.
Khatavkar
,
P. D.
Anderson
, and
H. E. H.
Meijer
, “
Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model
,”
J. Fluid Mech.
572
,
367
387
(
2007
).
17.
H.
Ding
and
P. D. M.
Spelt
, “
Inertial effects in droplet spreading: a comparison between diffuse-interface and level-set simulations
,”
J. Fluid Mech.
576
,
287
296
(
2007
).
18.
P.
Yue
,
C.
Zhou
, and
J. J.
Feng
, “
Sharp-interface limit of the Cahn–Hilliard model for moving contact lines
,”
J. Fluid Mech.
645
,
279
294
(
2010
).
19.
R.
Evans
, “
The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids
,”
Adv. Phys.
28
,
143
200
(
1979
).
20.
D.
Henderson
,
Fundamentals of Inhomogeneous Fluids
, 1st ed. (
Dekker
,
New York
,
1992
).
21.
A.
Nold
,
A.
Malijevský
, and
S.
Kalliadasis
, “
Wetting on a spherical wall: Influence of liquid-gas interfacial properties
,”
Phys. Rev. E
84
,
021603
(
2011
).
22.
P.
Yatsyshin
,
N.
Savva
, and
S.
Kalliadasis
, “
Spectral methods for the equations of classical density-functional theory: Relaxation dynamics of microscopic films
,”
J. Chem. Phys.
136
,
124113
(
2012
).
23.
N. D.
Alikakos
,
P. W.
Bates
, and
X.
Chen
, “
Convergence of the Cahn–Hilliard equation to the Hele–Shaw model
,”
Arch. Ration. Mech. Anal.
128
,
165
205
(
1994
).
24.
P.
Yue
and
J. J.
Feng
, “
Wall energy relaxation in the Cahn–Hilliard model for moving contact lines
,”
Phys. Fluids
23
,
012106
(
2011
).
25.
C.
Wylock
,
M.
Pradas
,
B.
Haut
,
P.
Colinet
, and
S.
Kalliadasis
, “
Disorder-induced hysteresis and nonlocality of contact line motion in chemically heterogeneous microchannels
,”
Phys. Fluids
24
,
032108
(
2012
).
26.
M. G.
Velarde
,
Eur. Phys. J. Spec. Top.
197
,
1
2
(
2011
).
27.
Y. D.
Shikhmurzaev
,
Capillary Flows with Forming Interfaces
(
Taylor & Francis
,
London
,
2008
).
28.
Y. D.
Shikhmurzaev
, “
Some dry facts about dynamic wetting
,”
Eur. Phys. J. Spec. Top.
197
,
47
60
(
2011
).
29.
Y. D.
Shikhmurzaev
, “
Discussion notes
,”
Eur. Phys. J. Spec. Top.
197
,
73
74
(
2011
).
30.
Y. D.
Shikhmurzaev
, “
Discussion notes on ‘Some singular errors near the contact line singularity, and ways to resolve both,' by L. M. Pismen
,”
Eur. Phys. J. Spec. Top.
197
,
75
80
(
2011
).
31.
Y. D.
Shikhmurzaev
, “
Discussion notes: On capillarity and slightly beyond
,”
Eur. Phys. J. Spec. Top.
197
,
85
87
(
2011
).
32.
Y. D.
Shikhmurzaev
, “
Discussion notes on ‘Note on thin film equations for solutions and suspensions,' by U. Thiele
,”
Eur. Phys. J. Spec. Top.
197
,
221
225
(
2011
).
33.
U.
Thiele
, “
Discussion notes: Thoughts on mesoscopic continuum models
,”
Eur. Phys. J. Spec. Top.
197
,
67
71
(
2011
).
34.
L. M.
Pismen
, “
Some singular errors near the contact line singularity, and ways to resolve both
,”
Eur. Phys. J. Spec. Top.
197
,
33
36
(
2011
).
35.
L. M.
Pismen
, “
Discussion notes on ‘Some dry facts about dynamic wetting,' by Y. D. Shikhmurzaev
,”
Eur. Phys. J. Spec. Top.
197
,
63
65
(
2011
).
36.
Y.
Pomeau
, “
Discussion notes: More (and last remarks) on the debate on capillarity
,”
Eur. Phys. J. Spec. Top.
197
,
81
83
(
2011
).
37.
Y.
Pomeau
, “
Discussion notes: Phase field models and moving contact line in the long perspective
,”
Eur. Phys. J. Spec. Top.
197
,
11
13
(
2011
).
38.
T. D.
Blake
, “
Discussion notes: A more collaborative approach to the moving contact-line problem?
Eur. Phys. J. Spec. Top.
197
,
343
345
(
2011
).
39.
L. M.
Pismen
and
Y.
Pomeau
, “
Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics
,”
Phys. Rev. E
62
,
2480
2492
(
2000
).
40.
D. N.
Sibley
,
A.
Nold
,
N.
Savva
, and
S.
Kalliadasis
, “
On the moving contact line singularity: Asymptotics of a diffuse-interface model
,”
Eur. Phys. J. E
36
,
26
(
2013
).
41.
J. W.
Cahn
, “
Critical point wetting
,”
J. Chem. Phys.
66
,
3667
3672
(
1977
).
42.
L.
Pismen
, “
Mesoscopic hydrodynamics of contact line motion
,”
Colloids Surf., A
206
,
11
30
(
2002
).
43.
A.
Pereira
and
S.
Kalliadasis
, “
Equilibrium gas-liquid-solid contact angle from density-functional theory
,”
J. Fluid Mech.
692
,
53
77
(
2012
).
44.
A. E.
Noether
,
Invariante Variationsprobleme
(
Nachr. Ges. Wiss
,
Göttingen
,
1918
), pp.
235
257
. http://www.physics.ucla.edu/~cwp/articles/noether.trans/german/emmy235.html.
45.
M.
Schmuck
,
M.
Pradas
,
G. A.
Pavliotis
, and
S.
Kalliadasis
, “
Upscaled phase-field models for interfacial dynamics in strongly heterogeneous domains
,”
Proc. R. Soc. London, Ser. A
468
,
3705
3724
(
2012
).
46.
P.
Yue
,
J. J.
Feng
,
C.
Liu
, and
J.
Shen
, “
A diffuse-interface method for simulating two-phase flows of complex fluids
,”
J. Fluid Mech.
515
,
293
317
(
2004
).
47.
X.
Xu
and
T.
Qian
, “
Contact line motion in confined liquid–gas systems: Slip versus phase transition
,”
J. Chem. Phys.
133
,
204704
(
2010
).
48.
J. W.
Cahn
and
J. E.
Hilliard
, “
Free energy of a nonuniform system. I. Interfacial free energy
,”
J. Chem. Phys.
28
,
258
267
(
1958
).
49.
T.
Qian
,
X.-P.
Wang
, and
P.
Sheng
, “
A variational approach to moving contact line hydrodynamics
,”
J. Fluid Mech.
564
,
333
360
(
2006
).
50.
T.
Qian
,
X.-P.
Wang
, and
P.
Sheng
, “
Molecular scale contact line hydrodynamics of immiscible flows
,”
Phys. Rev. E
68
,
016306
(
2003
).
51.
C.
Gugenberger
,
R.
Spatschek
, and
K.
Kassner
, “
Comparison of phase-field models for surface diffusion
,”
Phys. Rev. E
78
,
016703
(
2008
).
52.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
2000
).
53.
I.
Fredholm
, “
Sur une classe d'équations fonctionnelles
,”
Acta Math.
27
,
365
390
(
1903
).
54.
H. K.
Moffatt
, “
Viscous and resistive eddies near a sharp corner
,”
J. Fluid Mech.
18
,
1
18
(
1964
).
55.
P.
Yue
and
J.
Feng
, “
Can diffuse-interface models quantitatively describe moving contact lines?
Eur. Phys. J. Spec. Top.
197
,
37
46
(
2011
).
56.
D. N.
Sibley
,
N.
Savva
, and
S.
Kalliadasis
, “
Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system
,”
Phys. Fluids
24
,
082105
(
2012
).
57.
N.
Savva
and
S.
Kalliadasis
, “
Two-dimensional droplet spreading over topographical substrates
,”
Phys. Fluids
21
,
092102
(
2009
).
58.
N.
Savva
,
S.
Kalliadasis
, and
G. A.
Pavliotis
, “
Two-dimensional droplet spreading over random topographical substrates
,”
Phys. Rev. Lett.
104
,
084501
(
2010
).
59.
N.
Savva
,
G. A.
Pavliotis
, and
S.
Kalliadasis
, “
Contact lines over random topographical substrates. Part 1. Statics
,”
J. Fluid Mech.
672
,
358
383
(
2011
).
60.
N.
Savva
,
G. A.
Pavliotis
, and
S.
Kalliadasis
, “
Contact lines over random topographical substrates. Part 2. Dynamics
,”
J. Fluid Mech.
672
,
384
410
(
2011
).
61.
R.
Vellingiri
,
N.
Savva
, and
S.
Kalliadasis
, “
Droplet spreading on chemically heterogeneous substrates
,”
Phys. Rev. E
84
,
036305
(
2011
).
62.
D.
Herde
,
U.
Thiele
,
S.
Herminghaus
, and
M.
Brinkmann
, “
Driven large contact angle droplets on chemically heterogeneous substrates
,”
Europhys. Lett.
100
,
16002
(
2012
).
63.
A.
Dupuis
and
J. M.
Yeomans
, “
Modeling droplets on superhydrophobic surfaces: Equilibrium states and transitions
,”
Langmuir
21
,
2624
2629
(
2005
).
64.
H.
Kusumaatmaja
,
M. L.
Blow
,
A.
Dupuis
, and
J. M.
Yeomans
, “
The collapse transition on superhydrophobic surfaces
,”
Europhys. Lett.
81
,
36003
(
2008
).
65.
V. V.
Khatavkar
,
P. D.
Anderson
, and
H. E. H.
Meijer
, “
On scaling of diffuse-interface models
,”
Chem. Eng. Sci.
61
,
2364
2378
(
2006
).
66.
H.
Abels
,
H.
Garcke
, and
G.
Grün
, “
Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities
,”
Math. Models Meth. Appl. Sci.
22
,
1150013
(
2012
).
67.
F.
Magaletti
,
F.
Picano
,
M.
Chinappi
,
L.
Marino
, and
C. M.
Casciola
, “
The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids
,”
J. Fluid Mech.
714
,
95
126
(
2013
).
68.
X.
Wang
and
Y.
Wang
, “
The sharp interface limit of a phase field model for moving contact line problem
,”
Methods Appl. Anal.
14
,
287
294
(
2007
).
69.
D. E.
Weidner
and
L. W.
Schwartz
, “
Contact-line motion of shear-thinning liquids
,”
Phys. Fluids
6
,
3535
3538
(
1994
).
70.
P.
Yue
,
C.
Zhou
,
J. J.
Feng
,
C. F.
Ollivier-Gooch
, and
H. H.
Hu
, “
Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing
,”
J. Comput. Phys.
219
,
47
67
(
2006
).
71.
M.
Rex
and
H.
Löwen
, “
Dynamical density functional theory for colloidal dispersions including hydrodynamic interactions
,”
Eur. Phys. J. E
28
,
139
146
(
2009
).
72.
B. D.
Goddard
,
A.
Nold
,
N.
Savva
,
G. A.
Pavliotis
, and
S.
Kalliadasis
, “
General dynamical density functional theory for classical fluids
,”
Phys. Rev. Lett.
109
,
120603
(
2012
).
73.
B. D.
Goddard
,
A.
Nold
,
N.
Savva
,
P.
Yatsyshin
, and
S.
Kalliadasis
, “
Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments
,”
J. Phys.: Condens. Matter
25
,
035101
(
2013
).
74.
P.
Yatsyshin
,
N.
Savva
, and
S.
Kalliadasis
, “
Geometry-induced phase transition in fluids: Capillary prewetting
,”
Phys. Rev. E
87
,
020402
(R) (
2013
).
75.
J. A.
Barker
and
D.
Henderson
, “
Perturbation theory and equation of state for fluids. II. A successful theory of liquids
,”
J. Chem. Phys.
47
,
4714
4721
(
1967
).
76.
D.
Anderson
,
G.
McFadden
, and
A.
Wheeler
, “
A phase-field model with convection: sharp-interface asymptotics
,”
Physica D
151
,
305
331
(
2001
).
77.
R. L.
Pego
, “
Front migration in the nonlinear Cahn–Hilliard equation
,”
Proc. R. Soc. London, Ser. A
422
,
261
278
(
1989
).
78.
G.
Caginalp
and
P. C.
Fife
, “
Dynamics of layered interfaces arising from phase boundaries
,”
SIAM J. Appl. Math.
48
,
506
518
(
1988
).
79.
J.
Lowengrub
and
L.
Truskinovsky
, “
Quasi-incompressible Cahn–Hilliard fluids and topological transitions
,”
Proc. R. Soc. London, Ser. A
454
,
2617
2654
(
1998
).
80.
R.
Folch
,
J.
Casademunt
,
A.
Hernández-Machado
, and
L.
Ramírez-Piscina
, “
Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach
,”
Phys. Rev. E
60
,
1724
1733
(
1999
).
You do not currently have access to this content.