Thin film lubrication theory has been widely used to model multi-scale fluid phenomena. Variations of the same have also found application in fluid-based manufacturing process steps for micro- and nano-scale devices over large areas where a natural disparity in length scales exists. Here, a novel inkjet material deposition approach has been enabled by an enhanced thin film lubrication theory that accounts for nano-scale substrate parasitics. This approach includes fluid interactions with a thin flexible superstrate towards a new process called Jet and Coat of Thin-films (JCT). Numerical solutions of the model have been verified, and also validated against controlled experiments of polymer film deposition with good agreement. Understanding gleaned from the experimentally validated model has then been used to facilitate JCT process synthesis resulting in substantial reduction in the influence of parasitics and a concomitant improvement in the film thickness uniformity. Polymer films ranging from 20 to 500 nm mean thickness have been demonstrated with standard deviation of less than 2% of the mean film thickness. The JCT process offers advantages over spin coating which is not compatible with roll-to-roll processing and large area processing for displays. It also improves over techniques such as knife edge coating, slot die coating, as they are limited in the range of thicknesses of films that can be deposited without compromising uniformity.

1.
S.
Reddy
,
P.
Schunk
, and
R.
Bonnecaze
, “
Dynamics of low capillary number interfaces moving through sharp features
,”
Phys. Fluids
17
(
12
),
122104
(
2005
).
2.
S.
Reddy
and
R.
Bonnecaze
, “
Simulation of fluid flow in the step and flash imprint lithography process
,”
Microelectron. Eng.
82
(
1
),
60
70
(
2005
).
3.
M.
Colburn
,
B.
Choi
,
S.
Sreenivasan
,
R.
Bonnecaze
, and
C.
Willson
, “
Ramifications of lubrication theory on imprint lithography
,”
Microelectron. Eng.
75
(
3
),
321
329
(
2004
).
4.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
(
2
),
739
805
(
2009
).
5.
T. E.
Karis
,
W. T.
Kim
, and
M. S.
Jhon
, “
Spreading and dewetting in nanoscale lubrication
,”
Tribol. Lett.
18
(
1
),
27
41
(
2005
).
6.
R. K.
Yonkoski
and
D. S.
Soane
, “
Model for spin coating in microelectronic applications
,”
J. Appl. Phys.
72
(
2
),
725
(
1992
).
7.
S.-K.
Kim
,
J.-Y.
Yoo
, and
H.-K.
Oh
, “
Resist distribution effect of spin coating
,”
J. Vac. Sci. Technol. B
20
(
6
),
2206
(
2002
).
8.
J.-Y.
Jung
,
Y. T.
Kang
, and
J.
Koo
, “
Development of a new simulation model of spin coating process and its application to optimize the 450 mm wafer coating process
,”
Int. J. Heat Mass Transfer
53
(
9–10
),
1712
1717
(
2010
).
9.
M.
Cecchi
,
H.
Smith
, and
D.
Braun
, “
Method to optimize polymer film spin coating for polymer LED displays
,”
Synth. Met.
121
(
1–3
),
1715
1716
(
2001
).
10.
A.
Jeans
,
M.
Almanza-Workman
,
R.
Cobene
,
R.
Elder
,
R.
Garcia
,
F.
Gomez-Pancorbo
,
W.
Jackson
,
M.
Jam
,
H.-J.
Kim
,
O.
Kwon
,
H.
Luo
,
J.
Maltabes
,
P.
Mei
,
C.
Perlov
,
M.
Smith
,
C.
Taussig
,
F.
Jeffrey
,
S.
Braymen
,
J.
Hauschildt
,
K.
Junge
,
D.
Larson
, and
D.
Stieler
, “
Advances in roll-to-roll imprint lithography for display applications
,”
Proc. SPIE
7637
,
763719
(
2010
).
11.
G.
Perçin
,
T. S.
Lundgren
, and
B. T.
Khuri-Yakub
, “
Controlled ink-jet printing and deposition of organic polymers and solid particles
,”
Appl. Phys. Lett.
73
,
2375
(
1998
).
12.
M. W.
Lin
,
H.-L.
Chao
,
J.
Hao
,
E. K.
Kim
,
F.
Palmieri
,
W. C.
Kim
,
M.
Dickey
,
P. S.
Ho
, and
C. G.
Willson
, “
Planarization for reverse-tone step and flash imprint lithography
,”
Proc. SPIE
6151
,
61512G
(
2006
).
13.
C. N.
Hoth
,
R.
Steim
,
P.
Schilinsky
,
S. A.
Choulis
,
S. F.
Tedde
,
O.
Hayden
, and
C. J.
Brabec
, “
Topographical and morphological aspects of spray coated organic photovoltaics
,”
Org. Electron.
10
(
4
),
587
593
(
2009
).
14.
P. C.
Sukanek
, “
A model for spin coating with topography
,”
J. Electrochem. Soc.
136
(
10
),
3019
3026
(
1989
).
15.
L.
Peurrung
and
D.
Graves
, “
Film thickness profiles over topography in spin coating
,”
J. Electrochem. Soc.
138
(
7
),
2115
2124
(
1991
).
16.
M. M.
Ling
and
Z.
Bao
, “
Thin film deposition, patterning, and printing in organic thin film transistors
,”
Chem. Mater.
16
(
23
),
4824
4840
(
2004
).
17.
M.
Singh
,
H. M.
Haverinen
,
P.
Dhagat
, and
G. E.
Jabbour
, “
Inkjet printing—process and its applications
,”
Adv. Mater.
22
(
6
),
673
685
(
2010
).
18.
H.-Y.
Tseng
and
V.
Subramanian
, “
All inkjet-printed, fully self-aligned transistors for low-cost circuit applications
,”
Org. Electron.
12
(
2
),
249
256
(
2011
).
19.
E.
Tekin
,
P. J.
Smith
, and
U. S.
Schubert
, “
Inkjet printing as a deposition and patterning tool for polymers and inorganic particles
,”
Soft Matter
4
(
4
),
703
713
(
2008
).
20.
E.
Tekin
,
B.-J.
de Gans
, and
U. S.
Schubert
, “
Ink-jet printing of polymers–From single dots to thin film libraries
,”
J. Mater. Chem.
14
(
17
),
2627
(
2004
).
21.
A.
Olziersky
,
A.
Vila
, and
J. R.
Morante
, “
Multicomponent oxide thin-film transistors fabricated by a double-layer inkjet printing process
,”
Thin Solid Films
520
(
4
),
1334
1340
(
2011
).
22.
M.
Ren
,
H.
Gorter
,
J.
Michels
, and
R.
Andriessen
, “
Ink-jet technology for large area organic light-emitting diode and organic photovoltaic applications
,”
J. Imaging Sci. Technol.
55
(
4
),
040301
1
040301
6
(
2011
).
23.
F.
Krebs
, “
Fabrication and processing of polymer solar cells: A review of printing and coating techniques
,”
Sol. Energy Mater. Sol. Cells
93
(
4
),
394
412
(
2009
).
24.
F.
Krebs
, “
Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing
,”
Sol. Energy Mater. Sol. Cells
93
(
4
),
465
475
(
2009
).
25.
J.-U.
Park
,
M.
Hardy
,
S. J.
Kang
,
K.
Barton
,
K.
Adair
,
D.
Kishore Mukhopadhyay
,
C. Y.
Lee
,
M. S.
Strano
,
A. G.
Alleyne
,
J. G.
Georgiadis
,
P. M.
Ferreira
, and
J. A.
Rogers
, “
High-resolution electrohydrodynamic jet printing
,”
Nature Mater.
6
(
10
),
782
789
(
2007
).
26.
S. V.
Sreenivasan
,
B. J.
Choi
,
P. D.
Schumaker
, and
F.
Xu
, “
Status of UV imprint lithography for nanoscale manufacturing
,” in
Comprehensive Nanoscience and Technology
(
Academic Press
,
2011
), Vol.
4
, pp.
83
116
.
27.
M.
Colburn
,
A.
Grot
,
M. N.
Amistoso
,
B. J.
Choi
,
T. C.
Bailey
,
J. G.
Ekerdt
,
S. V.
Sreenivasan
,
J.
Hollenhorst
, and
C. G.
Willson
, “
Step and flash imprint lithography for sub-100-nm patterning
,”
Proc. SPIE
3997
,
453
(
2000
).
28.
T.
Müller
,
R.
Kumpe
,
H. A.
Gerber
,
R.
Schmolke
,
F.
Passek
, and
P.
Wagner
, “
Techniques for analysing nanotopography on polished silicon wafers
,”
Microelectron. Eng.
56
(
1–2
),
123
127
(
2001
).
29.
D.
Boning
and
B.
Lee
, “
Nanotopography issues in shallow trench isolation CMP
,”
MRS Bull.
27
(
10
),
761
765
(
2002
).
30.
L.
Bocquet
and
E.
Charlaix
, “
Nanofluidics, from bulk to interfaces
,”
Chem. Soc. Rev.
39
(
3
),
1073
1095
(
2010
).
31.
R. V.
Roy
,
A. J.
Roberts
, and
M. E.
Simpson
, “
A lubrication model of coating flows over a curved substrate in space
,”
J. Fluid Mech.
454
,
235
261
(
2002
).
32.
S.
Kalliadasis
,
C.
Bielarz
, and
G.
Homsy
, “
Steady free-surface thin film flows over topography
,”
Phys. Fluids
12
(
8
),
1889
(
2000
).
33.
R.
Khayat
and
S.
Welke
, “
Influence of inertia, gravity, and substrate topography on the two-dimensional transient coating flow of a thin Newtonian fluid film
,”
Phys. Fluids
13
(
2
),
355
367
(
2001
).
34.
A.
Mazouchi
and
G. M.
Homsy
, “
Free surface stokes flow over topography
,”
Phys. Fluids
13
(
10
),
2751
(
2001
).
35.
M. M. J.
Decré
and
J.-C.
Baret
, “
Gravity-driven flows of viscous liquids over two-dimensional topographies
,”
J. Fluid Mech.
487
(
1
),
147
166
(
2003
).
36.
N.
Savva
and
S.
Kalliadasis
, “
Two-dimensional droplet spreading over topographical substrates
,”
Phys. Fluids
21
(
9
),
092102
(
2009
).
37.
M.
Sellier
, “
Substrate design or reconstruction from free surface data for thin film flows
,”
Phys. Fluids
20
(
6
),
062106
(
2008
).
38.
M.
Sellier
and
S.
Panda
, “
Beating capillarity in thin film flows
,”
Int. J. Numer. Methods Fluids
63
(
4
),
431
448
(
2010
).
39.
C.
Heining
and
N.
Aksel
, “
Bottom reconstruction in thin-film flow over topography: Steady solution and linear stability
,”
Phys. Fluids
21
(
8
),
083605
(
2009
).
40.
C.
Heining
,
M.
Sellier
, and
D. N.
Aksel
, “
The inverse problem in creeping film flows
,”
Acta Mech.
223
(
4
)
841
847
(
2012
).
41.
C.
Heining
,
T.
Pollak
, and
N.
Aksel
, “
Pattern formation and mixing in three-dimensional film flow
,”
Phys. Fluids
24
(
4
)
042102
(
2012
).
42.
H.-Y.
Kim
and
L.
Mahadevan
, “
Capillary rise between elastic sheets
,”
J. Fluid Mech.
548
(
1
),
141
150
(
2006
).
43.
C.
Py
,
P.
Reverdy
,
L.
Doppler
,
J.
Bico
,
B.
Roman
, and
C.
Baroud
, “
Capillary origami: Spontaneous wrapping of a droplet with an elastic sheet
,”
Phys. Rev. Lett.
98
(
15
),
156103
(
2007
).
44.
C.
Py
,
P.
Reverdy
,
L.
Doppler
,
J.
Bico
,
B.
Roman
, and
C. N.
Baroud
, “
Capillarity induced folding of elastic sheets
,”
Eur. Phys. J. Spec. Top.
166
(
1
),
67
71
(
2009
).
45.
H.
Kwon
,
H.
Kim
,
J.
Puell
, and
L.
Mahadevan
, “
Equilibrium of an elastically confined liquid drop
,”
J. Appl. Phys.
103
(
9
),
093519
(
2008
).
46.
E.
de Langre
,
C. N.
Baroud
, and
P.
Reverdy
, “
Energy criteria for elasto-capillary wrapping
,”
J. Fluids Struct.
26
(
2
),
205
217
(
2010
).
47.
S. V.
Sreenivasan
,
B. J.
Choi
,
N. E.
Schumaker
,
R. D.
Voisin
,
M. P. C.
Watts
, and
M. J.
Meissl
, “
Step and repeat imprint lithography processes
,” U.S. patent 772745301 (1 June
2010
).
48.
Metrosol, Inc., now acquired by Jordan Valley Semiconductor, Inc., 3913 Todd Lane, Suite 106, Austin (as of June 2013), the same product is no longer available, see http://www.jpkummer.com/metrology.php?p=metrosol for information regarding a similar product.
49.
H. W.
Coleman
and
W. G.
Steele
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
(
John Wiley and Sons
,
Hoboken, NJ
,
2009
).
50.
A.
Panga
, “
Adaptive imprint planarization
,” M.S.E. thesis (
The University of Texas at Austin
, Austin, TX,
2008
).
51.
Zygo Corporation, Laurel Brook Rd, Middlefield, CT (as of June 2013), see http://www.zygo.com/?/met/interferometers/gpi/ for more information.
You do not currently have access to this content.