Focusing on ellipsoidal particles of different aspect ratios, the motion characteristics, including critical angle and stable vs. unstable rotational periods, are computationally analyzed in developing and fully developed tubular flows. As an application of particle transport and deposition, the one-way coupled Euler-Lagrange method enhanced by Euler's rotation equations is then employed to simulate laminar-turbulent flow in a subject-specific lung-airway model. First, to gain some basic insight into the dynamics of non-spherical particles, tubular flow is considered where the trajectories of ellipsoidal fibers with randomly initialized incidence angles were released at different inlet-plane positions, computed and visualized. Local and overall particle deposition results are compared between spheres, ellipsoidal fibers, and sphere-equivalent particles for which a revised Stokes diameter was developed. Concerning non-spherical particle transport and deposition in a subject-specific respiratory system, the validated computer simulation model provides realistic and accurate particle-deposition results. Specifically, slender non-spherical particles (i.e., those with higher aspect ratios) are potentially more harmful than thicker ones due to their ability to penetrate into deeper lung regions when somewhat aligned with the major flow field. Furthermore, non-spherical particle deposition is enhanced as the breathing rate increases.

1.
Z.
Wang
,
P. K.
Hopke
,
P. A.
Baron
,
G.
Ahmadi
,
Y. S.
Cheng
,
G.
Deye
, and
W. C.
Su
, “
Fiber classification of the influence of average air humidity
,”
Aerosol Sci. Technol.
39
,
1056
1063
(
2005
).
2.
L.
Tian
,
G.
Ahmadi
,
Z.
Wang
, and
P. K.
Hopke
, “
Transport and deposition of ellipsoidal fibers in low Reynolds number flows
,”
J. Aerosol Sci.
45
,
1
18
(
2012
).
3.
R.
Sturm
and
W.
Hofmann
, “
A theoretical approach to the deposition and clearance of fibers with variable size in the human respiratory tract
,”
J. Hazard. Mater.
170
,
210
218
(
2009
).
4.
S. E.
Gratton
,
P. A.
Ropp
,
P. D.
Pohlhaus
,
J. S.
Luft
,
V. J.
Madden
,
M. E.
Napier
, and
J. M.
Desimone
, “
The effect of particle design on cellular internalization pathways
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
11613
11618
(
2008
).
5.
C. W.
Lam
,
J. T.
James
,
R.
Mccluskey
,
S.
Arepalli
, and
R. L.
Hunter
, “
A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks
,”
Crit. Rev. Toxicol.
36
,
189
217
(
2006
).
6.
I.
Fenoglio
,
E.
Aldieri
,
E.
Gazzano
,
F.
Cesano
,
M.
Colonna
,
D.
Scarano
,
G.
Mazzucco
,
A.
Attanasio
,
Y.
Yakoub
,
D.
Lison
, and
B.
Fubini
, “
Thickness of multi-walled carbon nanotubes affects their lung toxicity
,”
Chem. Res. Toxicol.
25
,
74
82
(
2012
).
7.
D. W.
Kamp
, “
Asbestos-induced lung diseases: An update
,”
Trans. Res.
153
(
4
),
143
152
(
2009
).
8.
M. R.
Gwinn
,
D.
Devoney
,
A. M.
Jarabek
,
B.
Sonawane
,
J.
Wheller
,
D. N.
Weissman
,
S.
Masten
, and
C.
Thompson
, “
Meeting report: Mode(s) of action of asbestos and related mineral fibers
,”
Environ. Health Perspect.
119
(
12
),
1806
1810
(
2011
).
9.
M.
Pacurari
,
Y.
Qian
,
D. W.
Porter
,
M.
Wolfarth
,
Y.
Wan
, and
D.
Luo
, “
Multi-walled carbon nanotube-induced gene expression in the mouse lung: Association with lung pathology
,”
Toxicol. Appl. Pharmacol.
255
(
1
),
18
31
(
2011
).
10.
C.
Kleinstreuer
and
Y.
Feng
, “
Computational analysis of non-spherical particle transport and deposition in shear flow with application to lung aerosol dynamics – A review
,”
ASME J. Biomech. Eng.
135
(
2
),
021007
1
021007
19
(
2013
).
11.
E. A.
Simone
,
T. D.
Dziubla
, and
V. R.
Muzykantov
, “
Polymeric carriers: Role of geometry in drug delivery
,”
Expert Opin. Drug Deliv.
5
(
12
),
1283
1300
(
2008
).
12.
C.
Kleinstreuer
,
E. M.
Childress
, and
A. S.
Kennedy
, “
Targeted drug delivery: Multifunctional nanoparticles and direct micro-drug delivery to tumors
,”
Transport in Biological Media
, edited by
S.
Becker
and
A.
Kuznetsov
(
Elsevier
,
London,
2012
), Chap. 10.
13.
G. B.
Jeffery
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. London A
102
,
161
179
(
1922
).
14.
I.
Gallily
and
A. D.
Eisner
, “
On the orderly nature of the motion of nonspherical aerosol particles: I. Deposition from a Laminar flow
,”
J. Colloid Interface Sci.
68
(
2
),
320
337
(
1979
).
15.
Y. K.
Chen
and
C. P.
Yu
, “
Sedimentation of fibers from Laminar flows in a horizontal circular duct
,”
Aerosol Sci. Technol.
14
,
343
347
(
1991
).
16.
F. G.
Fan
and
G.
Ahmadi
, “
A sublayer model for wall deposition of ellipsoidal particles in turbulent streams
,”
J. Aerosol Sci.
26
(
5
),
813
840
(
1995
).
17.
K. T.
Shanley
and
G.
Ahmadi
, “
A numerical model for simulating the motion of ellipsoidal fibers suspended in low Reynolds number shear flows
,”
Aerosol Sci. Technol.
45
,
838
848
(
2011
).
18.
C.
Yin
,
L.
Rosendahl
,
S. K.
Kaer
, and
H.
Sorensen
, “
Modeling the motion of cylindrical particle in a nonuniform flow
,”
Chem. Eng. Sci.
58
,
3489
3498
(
2003
).
19.
S. M.
Hoegberg
, “
Particle transport in human lung-effects of particle size and shape
,” Licentiate Thesis (
Luleå University of Technology
, Luleå, Sweden,
2008
).
20.
J. K.
Comer
and
C.
Kleinstreuer
, “
Computational analysis of convection heat transfer to non-spherical particles
,”
Int. J. Heat Mass Transfer
38
(
17
),
3171
3180
(
1995
).
21.
T.
Myojo
, “
Deposition of fibrous aerosol in model bifurcating tubes
,”
J. Aerosol Sci.
18
,
337
347
(
1987
).
22.
T.
Myojo
, “
The effect of length and diameter on deposition of fibrous aerosol in a model lung bifurcation
,”
J. Aerosol Sci.
21
(
5
),
651
659
(
1990
).
23.
T.
Myojo
and
M.
Takaya
, “
Estimation of fibrous aerosol deposition in upper bronchi based on experimental data with model bifurcation
,”
Ind. Health
39
,
141
149
(
2001
).
24.
E. R.
Weibel
, “
Principles and methods for the morphometric study of the lung and other organs
,”
Lab. Invest.
12
,
131
(
1963
).
25.
J.
Marijnissen
,
A.
Zeckendorf
,
S.
Lemkowitz
, and
H.
Bibo
, “
Transport and deposition of uniform respirable fibres in a physical lung model
,”
J. Aerosol Sci.
22
(
1
),
S859
S862
(
1991
).
26.
W. C.
Su
and
Y. S.
Cheng
, “
Fiber deposition pattern in two human respiratory tract replicas
,”
Inhalation Toxicol.
18
(
10
),
749
760
(
2006
).
27.
W. C.
Su
and
Y. S.
Cheng
, “
Deposition of man-made fibers in human respiratory airway casts
,”
J. Aerosol Sci.
40
,
270
284
(
2009
).
28.
Y.
Zhou
,
W. C.
Su
, and
Y. S.
Cheng
, “
Fiber deposition in the tracheobronchial region: Deposition equations
,”
Inhalation Toxicol.
20
(
13
),
1191
1198
(
2008
).
29.
R. G.
Sussman
,
B. S.
Cohen
, and
M.
Lippmann
, “
Asbestos fiber deposition in a human tracheobronchial cast: I. Experimental
,”
Inhalation Toxicol.
3
,
145
160
(
1991
).
30.
H. I.
Andersson
,
L.
Zhao
, and
M.
Barri
, “
Torque-coupling and particle–turbulence interactions
,”
J. Fluid Mech.
1
(
1
),
1
11
(
2012
).
31.
H.
Goldstein
,
C. P.
Poole
, and
J.
Safko
,
Classical Mechanics
(
Addison-Wesley Pub. Co.
,
London
,
2001
).
32.
Y.
Feng
, “
Non-spherical particle dynamics analysis with applications to inhaled aerosol transport and deposition in human upper airway models
,” Ph.D. dissertation (
NC State University
, Raleigh, NC,
2013
).
33.
Z.
Zhang
and
C.
Kleinstreuer
, “
Laminar-to-turbulent fluid-nanoparticle dynamics simulations: Model comparisons and nanoparticle-deposition applications
,”
Int. J. Numer. Methods Biomed. Eng.
27
,
1930
1950
(
2011
).
34.
Z.
Zhang
,
C.
Kleinstreuer
, and
S.
Hyun
, “
Size-change and deposition of conventional and composite cigarette smoke particles during inhalation in a subject-specific airway model
,”
J. Aerosol Sci.
46
,
34
52
(
2012
).
35.
Y.
Wang
and
P. W.
James
, “
On the effect of anisotropy on the turbulent dispersion and deposition of small particles
,”
Int. J. Multiphase Flow
25
,
551
558
(
1999
).
36.
E. A.
Matida
,
W. H.
Finlay
,
C. F.
Lange
, and
B.
Grgic
, “
Improved numerical simulation of aerosol deposition in an idealized mouth-throat
,”
J. Aerosol Sci.
35
,
1
19
(
2004
).
37.
A. R.
Shenoy
and
C.
Kleinstreuer
, “
Flow over a thin circular disk at low to moderate Reynolds numbers
,”
J. Fluid Mech.
605
,
253
262
(
2008
).
38.
M.
Mando
and
L.
Rosendahl
, “
On the motion of non-spherical particles at high Reynolds number
,”
Powder Technol.
202
,
1
13
(
2010
).
39.
E.
Michaelides
, “
Hydrodynamic force and heat/mass transfer from particles, bubbles, and drops-the Freeman scholar lecture
,”
J. Fluids Eng.
125
,
209
238
(
2003
).
40.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Dover Publications, Inc.
,
Mineola, NY
,
2005
).
41.
E.
Loth
, “
Drag of nano-spherical solid particles of regular and irregular shape
,”
Powder Technol.
182
,
342
353
(
2008
).
42.
H.
Brenner
, “
The Stokes resistance of an arbitrary particle
,”
Chem. Eng. Sci.
18
,
1
25
(
1963
).
43.
A.
Hölzer
and
M.
Sommerfeld
, “
New simple correlation formula for the drag coefficient of non-spherical particles
,”
Powder Technol.
184
(
3
),
361
365
(
2008
).
44.
A.
Richter
and
P. A.
Nikrityuk
, “
Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers
,”
Int. J. Heat Mass Transfer
55
,
1343
1354
(
2012
).
45.
S. F.
Hoerner
,
Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance
(
self-published
,
Midland Park, NJ
,
1965
).
46.
E. Y.
Harper
and
I.
Chang
, “
Maximum dissipation resulting from lift in a slow viscous shear flow
,”
J. Fluid Mech.
33
(
2
),
209
225
(
1968
).
47.
D. A.
Drew
and
R. T.
Lahey
 Jr.
, “
The virtual mass and lift force on a sphere in rotating and straining flow
,”
Int. J. Multiphase Flow
25
(
6/7
),
1321
1372
(
1987
).
48.
T. R.
Auton
, “
The lift force on a spherical body in a rotational flow
,”
J. Fluid Mech.
183
,
199
218
(
1987
).
49.
P. W.
Longest
and
J.
Xi
, “
Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways
,”
Aerosol Sci. Technol.
41
,
380
397
(
1990
).
50.
L.
Zhang
,
B.
Asgharian
, and
S.
Anjilvbel
, “
Inertial and interceptional deposition of fibers in a bifurcating airway
,”
J. Aerosol Sci.
9
(
3
),
419
532
(
1996
).
51.
B. R.
Jennings
,
K.
Parslow
,
B. R.
Jennings
, and
K.
Parslow
, “
Particle size measurement: The equivalent spherical diameter
,”
Proc. R. Soc. London, Ser. A
419
(
1856
),
137
149
(
1988
).
52.
S. M.
Hoegberg
,
H. O.
Akerstedt
,
T. S.
Lundstroem
, and
J. B.
Freund
, “
Respiratory deposition of fibers in the non-inertial regime-development and application of a semi-analytical model
,”
Aerosol Sci. Technol.
44
,
847
860
(
2010
).
53.
M.
Shapiro
and
M.
Goldenberg
, “
Deposition of glass fiber particles from turbulent air flow in a pipe
,”
J. Aerosol Sci.
24
(
1
),
65
87
(
1993
).
54.
A.
Johnstone
,
M.
Uddin
,
A.
Pollard
,
A.
Heenan
, and
W. H.
Finlay
, “
The flow inside an idealised form of the human extra-thoracic airway
,”
Exp. Fluids
37
,
673
689
(
2004
).
55.
S. T.
Jayaraju
,
M.
Brouns
,
C.
Lacor
,
B.
Belkassem
, and
S.
Verbanck
, “
Large Eddy and detached Eddy simulations of fluid flow and particle deposition in a human mouth-throat
,”
J. Aerosol Sci.
39
(
10
),
862
875
(
2008
).
56.
A.
Pollard
and
A. M.
Shinneeb
, “
Oro-pharangeal-laryngeal flow physics
,” in
Proceedings of the 17th Australasian Fluid Mechanics Conference, Auckland, New Zealand
(
Curran Associates Inc.
,
Red Hook, NY
,
2011
), p.
861
.
57.
Z.
Zhang
and
C.
Kleinstreuer
, “
Transient airflow structures and particle transport in a sequentially branching lung airway model
,”
Phys. Fluids
14
,
862
(
2002
).
You do not currently have access to this content.