We present a laboratory experiment in a large directional wave basin to discuss the instability of a plane wave to oblique side band perturbations in finite water depth. Experimental observations, with the support of numerical simulations, confirm that a carrier wave becomes modulationally unstable even for relative water depths k0h < 1.36 (with k the wavenumber of the plane wave and h the water depth), when it is perturbed by appropriate oblique disturbances. Results corroborate that the underlying mechanism is still a plausible explanation for the generation of rogue waves in finite water depth.
REFERENCES
1.
A.
Chabchoub
, N. P.
Hoffmann
, and N.
Akhmediev
, “Rogue wave observation in a water wave tank
,” Phys. Rev. Lett.
106
(20
), 204502
(2011
).2.
A.
Chabchoub
, N.
Hoffmann
, M.
Onorato
, and N.
Akhmediev
, “Super rogue waves: Observation of a higher-order breather in water waves
,” Phys. Rev. X
2
(1
), 011015
(2012
).3.
M.
Onorato
, D.
Proment
, G.
Clauss
, and M.
Klein
, “Rogue waves: From nonlinear Schrödinger breather solutions to sea-keeping test
,” PLoS ONE
8
(2
), e54629
(2013
).4.
D.
Chalikov
, “Freak waves: Their occurrence and probability
,” Phys. Fluids
21
, 076602
(2009
).5.
D. R.
Solli
, C.
Ropers
, P.
Koonath
, and B.
Jalali
, “Optical rogue waves
,” Nature (London)
450
, 1054
–1057
(2007
).6.
B.
Kibler
, J.
Fatome
, C.
Finot
, G.
Millot
, F.
Dias
, G.
Genty
, N.
Akhmediev
, and J. M.
Dudley
, “The peregrine soliton in nonlinear fibre optics
,” Nat. Phys.
6
(10
), 790
–795
(2010
).7.
H.
Bailung
, S. K.
Sharma
, and Y.
Nakamura
, “Observation of peregrine solitons in a multicomponent plasma with negative ions
,” Phys. Rev. Lett.
107
, 255005
(2011
).8.
M.
Onorato
, S.
Residori
, U.
Bortolozzo
, A.
Montina
, and F. T.
Arecchi
, “Rogue waves and their generating mechanisms in different physical contexts
,” Phys. Rep.
528
(2
), 47
–89
(2013
).9.
P. A. E. M.
Janssen
, “Nonlinear four-wave interaction and freak waves
,” J. Phys. Oceanogr.
33
(4
), 863
–884
(2003
).10.
C.
Kharif
and E.
Pelinovsky
, “Physical mechanisms of the rogue wave phenomenon
,” Eur. J. Mech. B/Fluid
21
(5
), 561
–577
(2003
).11.
A. R.
Osborne
, Nonlinear Ocean Waves and the Inverse Scattering Transform
, International Geophysics Series
Volume 97
(Elsevier
, San Diego
, 2010
).12.
V. E.
Zakharov
and L. A.
Ostrovsky
, “Modulation instability: The beginning
,” Physica D
238
(5
), 540
–548
(2009
).13.
V.
Zakharov
, “Stability of period waves of finite amplitude on surface of a deep fluid
,” J. Appl. Mech. Tech. Phys.
9
, 190
–194
(1968
).14.
A. R.
Osborne
, M.
Onorato
, and M.
Serio
, “The nonlinear dynamics of rogue waves and holes in deep-water gravity wave train
,” Phys. Lett. A
275
, 386
–393
(2000
).15.
K.
Dysthe
, H. E.
Krogstad
, and P.
Müller
, “Oceanic rogue waves
,” Annu. Rev. Fluid Mech.
40
, 287
–310
(2008
).16.
K.
Trulsen
, C. T.
Stansberg
, and M. G.
Velarde
, “Laboratory evidence of three-dimensional frequency downshift of waves in a long tank
,” Phys. Fluids
11
, 235
(1999
).17.
A. V.
Babanin
, T.
Waseda
, T.
Kinoshita
, and A.
Toffoli
, “Wave breaking in directional fields
,” J. Phys. Oceanogr.
41
(1
), 145
–156
(2011
).18.
K.
Trulsen
and K. B.
Dysthe
, “A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water
,” Wave Motion
24
, 281
–289
(1996
).19.
K.
Trulsen
and K. B.
Dysthe
, “Frequency downshift in three-dimensional wave trains in a deep basin
,” J. Fluid Mech.
352
, 359
–373
(1997
).20.
A.
Slunyaev
, C.
Kharif
, E.
Pelinovsky
, and T.
Talipova
, “Nonlinear wave focusing on water of finite depth
,” Physica D
173
(1–2
), 77
–96
(2002
).21.
F. R. S.
Longuet-Higgins
, “On the nonlinear transfer of energy in the peak of a gravity–wave spectrum: A simplified model
,” Proc. R. Soc. London, Ser. A
347
, 311
–328
(1976
).22.
O.
Gramstad
and K.
Trulsen
, “Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth
,” J. Fluid Mech.
670
, 404
–426
(2011
).23.
S.
Haver
and J.
Andersen
, “Freak waves: Rare realizations of a typical population or typical realizations of a rare population
?” in Proceedings of the 10th International Offshore and Polar Engineering (ISOPE) Conference
, Seattle, USA
, May 2000
.24.
K.
Trulsen
, “Weakly nonlinear sea surface waves—Freak waves and deterministic forecasting
,” Geometric Modelling, Numerical Simulation, and Optimization
(Springer
, 2007
), pp. 191
–209
.25.
A. V.
Babanin
, T.-W.
Hsu
, A.
Roland
, S.-H.
Ou
, D.-J.
Doong
, and C. C.
Kao
, “Spectral wave modelling of typhoon krosa
,” Nat. Hazards Earth Syst. Sci.
11
(2
), 501
–511
(2011
).26.
H.
Chien
, C.-C.
Kao
, and L. Z. H.
Chuang
, “On the characteristics of observed coastal freak waves
,” Coast. Eng. Japan
44
(04
), 301
–319
(2002
).27.
T. B.
Benjamin
, “Instability of periodic wave trains in nonlinear dispersive systems
,” Proc. R. Soc. London
A299
, 59
–75
(1967
).28.
D. J.
Benney
and G. J.
Roskes
, “Wave instabilities
,” Stud. Appl. Math.
48
(377
), 377
–385
(1969
).29.
30.
P. A. E. M.
Janssen
and M.
Onorato
, “The intermediate water depth limit of the Zakharov equation and consequences for wave prediction
,” J. Phys. Oceanogr.
37
, 2389
–2400
(2007
).31.
Ø.
Kristiansen
, D.
Fructus
, D.
Clamond
, and J.
Grue
, “Simulations of crescent water wave patterns on finite depth
,” Phys. Fluids
17
, 064101
(2005
).32.
M.
Francius
and C.
Kharif
, “Three dimensional instabilities of periodic gravity waves in shallow water
,” J. Fluid Mech.
561
, 417
–437
(2006
).33.
J. W.
McLean
, “Instabilities of finite-amplitude gravity waves on water of finite depth
,” J. Fluid Mech.
114
(1
), 331
–341
(1982
).34.
M.
Onorato
, L.
Cavaleri
, S.
Fouques
, O.
Gramstad
, P. A. E. M.
Janssen
, J.
Monbaliu
, A. R.
Osborne
, C.
Pakozdi
, M.
Serio
, C. T.
Stansberg
, A.
Toffoli
, and K.
Trulsen
, “Statistical properties of mechanically generated surface gravity waves: A laboratory experiment in a 3d wave basin
,” J. Fluid Mech.
627
, 235
–257
(2009
).35.
B. J.
West
, K. A.
Brueckner
, R. S.
Jand
, D. M.
Milder
, and R. L.
Milton
, “A new method for surface hydrodynamics
,” J. Geophys. Res.
92
(C11
), 11803
–11824
, doi: (1987
).36.
A.
Toffoli
, M.
Benoit
, M.
Onorato
, and E. M.
Bitner-Gregersen
, “The effect of third-order nonlinearity on statistical properties of random directional waves in finite depth
,” Nonlinear Processes Geophys.
16
, 131
–139
(2009
).37.
M.
Tanaka
, “Verification of Hasselmann's energy transfer among surface gravity waves by direct numerical simulations of primitive equations
,” J. Fluid Mech.
444
, 199
–221
(2001
).38.
A.
Toffoli
, O.
Gramstad
, K.
Trulsen
, J.
Monbaliu
, E. M.
Bitner-Gregersen
, and M.
Onorato
, “Evolution of weakly nonlinear random directional waves: Laboratory experiments and numerical simulations
,” J. Fluid Mech.
664
, 313
–336
(2010
).39.
E.
Lo
and C. C.
Mei
, “Numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation
,” J. Fluid Mech.
150
(3
), 395
–416
(1985
).40.
M. P.
Tulin
and T.
Waseda
, “Laboratory observation of wave group evolution, including breaking effects
,” J. Fluid Mech.
378
, 197
–232
(1999
).© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.