We present a laboratory experiment in a large directional wave basin to discuss the instability of a plane wave to oblique side band perturbations in finite water depth. Experimental observations, with the support of numerical simulations, confirm that a carrier wave becomes modulationally unstable even for relative water depths k0h < 1.36 (with k the wavenumber of the plane wave and h the water depth), when it is perturbed by appropriate oblique disturbances. Results corroborate that the underlying mechanism is still a plausible explanation for the generation of rogue waves in finite water depth.

1.
A.
Chabchoub
,
N. P.
Hoffmann
, and
N.
Akhmediev
, “
Rogue wave observation in a water wave tank
,”
Phys. Rev. Lett.
106
(
20
),
204502
(
2011
).
2.
A.
Chabchoub
,
N.
Hoffmann
,
M.
Onorato
, and
N.
Akhmediev
, “
Super rogue waves: Observation of a higher-order breather in water waves
,”
Phys. Rev. X
2
(
1
),
011015
(
2012
).
3.
M.
Onorato
,
D.
Proment
,
G.
Clauss
, and
M.
Klein
, “
Rogue waves: From nonlinear Schrödinger breather solutions to sea-keeping test
,”
PLoS ONE
8
(
2
),
e54629
(
2013
).
4.
D.
Chalikov
, “
Freak waves: Their occurrence and probability
,”
Phys. Fluids
21
,
076602
(
2009
).
5.
D. R.
Solli
,
C.
Ropers
,
P.
Koonath
, and
B.
Jalali
, “
Optical rogue waves
,”
Nature (London)
450
,
1054
1057
(
2007
).
6.
B.
Kibler
,
J.
Fatome
,
C.
Finot
,
G.
Millot
,
F.
Dias
,
G.
Genty
,
N.
Akhmediev
, and
J. M.
Dudley
, “
The peregrine soliton in nonlinear fibre optics
,”
Nat. Phys.
6
(
10
),
790
795
(
2010
).
7.
H.
Bailung
,
S. K.
Sharma
, and
Y.
Nakamura
, “
Observation of peregrine solitons in a multicomponent plasma with negative ions
,”
Phys. Rev. Lett.
107
,
255005
(
2011
).
8.
M.
Onorato
,
S.
Residori
,
U.
Bortolozzo
,
A.
Montina
, and
F. T.
Arecchi
, “
Rogue waves and their generating mechanisms in different physical contexts
,”
Phys. Rep.
528
(
2
),
47
89
(
2013
).
9.
P. A. E. M.
Janssen
, “
Nonlinear four-wave interaction and freak waves
,”
J. Phys. Oceanogr.
33
(
4
),
863
884
(
2003
).
10.
C.
Kharif
and
E.
Pelinovsky
, “
Physical mechanisms of the rogue wave phenomenon
,”
Eur. J. Mech. B/Fluid
21
(
5
),
561
577
(
2003
).
11.
A. R.
Osborne
,
Nonlinear Ocean Waves and the Inverse Scattering Transform
,
International Geophysics Series
Volume
97
(
Elsevier
,
San Diego
,
2010
).
12.
V. E.
Zakharov
and
L. A.
Ostrovsky
, “
Modulation instability: The beginning
,”
Physica D
238
(
5
),
540
548
(
2009
).
13.
V.
Zakharov
, “
Stability of period waves of finite amplitude on surface of a deep fluid
,”
J. Appl. Mech. Tech. Phys.
9
,
190
194
(
1968
).
14.
A. R.
Osborne
,
M.
Onorato
, and
M.
Serio
, “
The nonlinear dynamics of rogue waves and holes in deep-water gravity wave train
,”
Phys. Lett. A
275
,
386
393
(
2000
).
15.
K.
Dysthe
,
H. E.
Krogstad
, and
P.
Müller
, “
Oceanic rogue waves
,”
Annu. Rev. Fluid Mech.
40
,
287
310
(
2008
).
16.
K.
Trulsen
,
C. T.
Stansberg
, and
M. G.
Velarde
, “
Laboratory evidence of three-dimensional frequency downshift of waves in a long tank
,”
Phys. Fluids
11
,
235
(
1999
).
17.
A. V.
Babanin
,
T.
Waseda
,
T.
Kinoshita
, and
A.
Toffoli
, “
Wave breaking in directional fields
,”
J. Phys. Oceanogr.
41
(
1
),
145
156
(
2011
).
18.
K.
Trulsen
and
K. B.
Dysthe
, “
A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water
,”
Wave Motion
24
,
281
289
(
1996
).
19.
K.
Trulsen
and
K. B.
Dysthe
, “
Frequency downshift in three-dimensional wave trains in a deep basin
,”
J. Fluid Mech.
352
,
359
373
(
1997
).
20.
A.
Slunyaev
,
C.
Kharif
,
E.
Pelinovsky
, and
T.
Talipova
, “
Nonlinear wave focusing on water of finite depth
,”
Physica D
173
(
1–2
),
77
96
(
2002
).
21.
F. R. S.
Longuet-Higgins
, “
On the nonlinear transfer of energy in the peak of a gravity–wave spectrum: A simplified model
,”
Proc. R. Soc. London, Ser. A
347
,
311
328
(
1976
).
22.
O.
Gramstad
and
K.
Trulsen
, “
Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth
,”
J. Fluid Mech.
670
,
404
426
(
2011
).
23.
S.
Haver
and
J.
Andersen
, “
Freak waves: Rare realizations of a typical population or typical realizations of a rare population
?” in
Proceedings of the 10th International Offshore and Polar Engineering (ISOPE) Conference
,
Seattle, USA
, May
2000
.
24.
K.
Trulsen
, “
Weakly nonlinear sea surface waves—Freak waves and deterministic forecasting
,”
Geometric Modelling, Numerical Simulation, and Optimization
(
Springer
,
2007
), pp.
191
209
.
25.
A. V.
Babanin
,
T.-W.
Hsu
,
A.
Roland
,
S.-H.
Ou
,
D.-J.
Doong
, and
C. C.
Kao
, “
Spectral wave modelling of typhoon krosa
,”
Nat. Hazards Earth Syst. Sci.
11
(
2
),
501
511
(
2011
).
26.
H.
Chien
,
C.-C.
Kao
, and
L. Z. H.
Chuang
, “
On the characteristics of observed coastal freak waves
,”
Coast. Eng. Japan
44
(
04
),
301
319
(
2002
).
27.
T. B.
Benjamin
, “
Instability of periodic wave trains in nonlinear dispersive systems
,”
Proc. R. Soc. London
A299
,
59
75
(
1967
).
28.
D. J.
Benney
and
G. J.
Roskes
, “
Wave instabilities
,”
Stud. Appl. Math.
48
(
377
),
377
385
(
1969
).
29.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
Wiley Interscience
,
New York
,
1974
).
30.
P. A. E. M.
Janssen
and
M.
Onorato
, “
The intermediate water depth limit of the Zakharov equation and consequences for wave prediction
,”
J. Phys. Oceanogr.
37
,
2389
2400
(
2007
).
31.
Ø.
Kristiansen
,
D.
Fructus
,
D.
Clamond
, and
J.
Grue
, “
Simulations of crescent water wave patterns on finite depth
,”
Phys. Fluids
17
,
064101
(
2005
).
32.
M.
Francius
and
C.
Kharif
, “
Three dimensional instabilities of periodic gravity waves in shallow water
,”
J. Fluid Mech.
561
,
417
437
(
2006
).
33.
J. W.
McLean
, “
Instabilities of finite-amplitude gravity waves on water of finite depth
,”
J. Fluid Mech.
114
(
1
),
331
341
(
1982
).
34.
M.
Onorato
,
L.
Cavaleri
,
S.
Fouques
,
O.
Gramstad
,
P. A. E. M.
Janssen
,
J.
Monbaliu
,
A. R.
Osborne
,
C.
Pakozdi
,
M.
Serio
,
C. T.
Stansberg
,
A.
Toffoli
, and
K.
Trulsen
, “
Statistical properties of mechanically generated surface gravity waves: A laboratory experiment in a 3d wave basin
,”
J. Fluid Mech.
627
,
235
257
(
2009
).
35.
B. J.
West
,
K. A.
Brueckner
,
R. S.
Jand
,
D. M.
Milder
, and
R. L.
Milton
, “
A new method for surface hydrodynamics
,”
J. Geophys. Res.
92
(
C11
),
11803
11824
, doi: (
1987
).
36.
A.
Toffoli
,
M.
Benoit
,
M.
Onorato
, and
E. M.
Bitner-Gregersen
, “
The effect of third-order nonlinearity on statistical properties of random directional waves in finite depth
,”
Nonlinear Processes Geophys.
16
,
131
139
(
2009
).
37.
M.
Tanaka
, “
Verification of Hasselmann's energy transfer among surface gravity waves by direct numerical simulations of primitive equations
,”
J. Fluid Mech.
444
,
199
221
(
2001
).
38.
A.
Toffoli
,
O.
Gramstad
,
K.
Trulsen
,
J.
Monbaliu
,
E. M.
Bitner-Gregersen
, and
M.
Onorato
, “
Evolution of weakly nonlinear random directional waves: Laboratory experiments and numerical simulations
,”
J. Fluid Mech.
664
,
313
336
(
2010
).
39.
E.
Lo
and
C. C.
Mei
, “
Numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation
,”
J. Fluid Mech.
150
(
3
),
395
416
(
1985
).
40.
M. P.
Tulin
and
T.
Waseda
, “
Laboratory observation of wave group evolution, including breaking effects
,”
J. Fluid Mech.
378
,
197
232
(
1999
).
You do not currently have access to this content.