This paper investigates the effect of the background rotation on the radiative instability of a columnar Rankine vortex in a strongly stratified fluid. We show that a cyclonic background rotation strongly stabilizes the radiative instability. The modes become neutral when the Rossby number Ro is below a critical value which depends on the azimuthal wavenumber of the wave. In the limit of small Rossby number, there exist fast neutral waves that are not captured by the quasi-geostrophic theory. In the presence of anticyclonic background rotation, the centrifugal instability dominates the radiative instability only when −400 ≲ Ro < −1. The numerical stability analysis is completed by asymptotic analyses for large wavenumbers which explain the properties and mechanisms of the waves and the instabilities. The stability of a continuous smoothed Rankine vortex is also investigated. The most amplified azimuthal wavenumber is then finite instead of infinite for the Rankine vortex.

1.
Lord
Kelvin
, “
Vibrations of a columnar vortex
,”
Philos. Mag. Ser. 5
10
(
61
),
155
168
(
1880
).
2.
P. G.
Saffman
,
Vortex Dynamics
(
Cambridge University Press
,
Cambridge
,
1992
).
3.
D.
Fabre
,
D.
Sipp
, and
L.
Jacquin
, “
Kelvin waves and the singular modes of the Lamb-Oseen vortex
,”
J. Fluid Mech.
551
,
235
274
(
2006
).
4.
X.
Riedinger
,
P.
Meunier
, and
S.
Le Dizès
, “
Instability of a vertical columnar vortex in a stratified fluid
,”
Exp. Fluids
49
,
673
681
(
2010
).
5.
X.
Riedinger
,
S.
Le Dizès
, and
P.
Meunier
, “
Radiative instability of the flow around a rotating cylinder in a stratified fluid
,”
J. Fluid Mech.
672
,
130
146
(
2011
).
6.
P.
Billant
and
S.
Le Dizès
, “
Waves on a columnar vortex in a strongly stratified fluid
,”
Phys. Fluids
21
,
106602
(
2009
).
7.
S.
Le Dizès
and
P.
Billant
, “
Radiative instability in stratified vortices
,”
Phys. Fluids
21
,
096602
(
2009
).
8.
D. A.
Schecter
and
M. T.
Montgomery
, “
Damping and pumping of a vortex Rossby wave in a monotonic cyclone: Critical layer stirring versus inertia-buoyancy wave emission
,”
Phys. Fluids
16
,
1334
(
2004
).
9.
D. A.
Schecter
and
M. T.
Montgomery
, “
Conditions that inhibit the spontaneous radiation of spiral inertial-gravity waves from an intense mesocale cyclone
,”
J. Atmos. Sci.
63
,
435
(
2006
).
10.
D. A.
Schecter
, “
The spontaneous imbalance of an atmospheric vortex at high rossby number
,”
J. Atmos. Sci.
65
,
2498
(
2008
).
11.
R.
Ford
, “
The instability of an axisymmetric vortex with monotonic potential vorticity in rotating shallow water
,”
J. Fluid Mech.
280
,
303
334
(
1994
).
12.
E.
Broadbent
and
D. W.
Moore
, “
Acoustic destabilization of vortices
,”
Philos. Trans. R. Soc. London, Ser. A
290
,
353
(
1979
).
13.
J.
Park
and
P.
Billant
, “
Radiative instability of an anticyclonic vortex in a stratified rotating fluid
,”
J. Fluid Mech.
707
,
381
392
(
2012
).
14.
W. D.
Smyth
and
J. C.
McWilliams
, “
Instability of an axisymmetric vortex in a stably stratified, rotating environment
,”
Theor. Comput. Fluid Dyn.
11
,
305
322
(
1998
).
15.
T.
Miyazaki
and
H.
Hanazaki
, “
Baroclinic instability of Kirchhoff's elliptic vortex
,”
J. Fluid Mech.
261
,
253
271
(
1994
).
16.
S.
Le Dizès
and
X.
Riedinger
, “
The strato-rotational instability of Taylor-Couette and Keplerian flows
,”
J. Fluid Mech.
660
,
147
161
(
2010
).
17.
S.
Le Dizès
and
L.
Lacaze
, “
An asymptotic description of vortex Kelvin modes
,”
J. Fluid Mech.
542
,
69
96
(
2005
).
18.
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers
(
McGraw-Hill
,
New York
,
1978
).
19.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1965
).
20.
L.
Parras
and
S.
Le Dizès
, “
Temporal instability modes of supersonic round jets
,”
J. Fluid Mech.
662
,
173
196
(
2010
).
21.
Lord
Rayleigh
, “
On the dynamics of revolving fluids
,”
Proc. R. Soc. London
93
,
148
154
(
1917
).
22.
R. C.
Kloosterziel
and
G. J. F.
van Heijst
, “
An experimental study of unstable barotropic vortices in a rotating fluid
,”
J. Fluid Mech.
223
,
1
24
(
1991
).
23.
F. W. J.
Olver
,
Asymptotics and Special Functions
(
Academic Press
,
New York
,
1974
).
24.
P.
Billant
and
F.
Gallaire
, “
Generalized Rayleigh criterion for non-axisymmetric centrifugal instabilities
,”
J. Fluid Mech.
542
,
365
379
(
2005
).
25.
A.
Lazar
,
A.
Stegner
, and
E.
Heifetz
, “
Inertial instability of intense stratified anticyclones. Part I : Generalized stability criterion
,”
J. Fluid Mech.
(in press).
You do not currently have access to this content.