We investigate the stability and bifurcation of Boussinesq thermal convection in a moderately rotating spherical shell, with the inner sphere free to rotate as a solid body due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres and the Prandtl number are fixed to 0.4 and 1, respectively. The Taylor number is varied from 522 to 5002 and the Rayleigh number from 1500 to 10 000. In this parameter range, the finite-amplitude traveling wave solutions, which have four-fold symmetry in the azimuthal direction, bifurcate supercritically at the critical points. The inner sphere rotates in the prograde direction due to the viscous torque of the fluid when the rotation rate is small while it rotates in the retrograde direction when the rotation rate is large. However, the stable region of these traveling wave solutions is quantitatively similar to that in the co-rotating system where the inner and outer spheres rotate with the same angular velocity. The structures of convective motions of these solutions such as the radial component of velocity are quantitatively similar to those in the co-rotating system, but the structure of mean zonal flows is effectively changed by the inner sphere rotation.

1.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Oxford University Press
,
New York
,
1961
),
654
pp
.
2.
P. H.
Roberts
, “
On the thermal instability of a rotating-fluid sphere containing heat sources
,”
Philos. Trans. R. Soc. London, Ser. A
263
,
93
(
1968
).
3.
F. H.
Busse
, “
Differential rotation in stellar convection zones
,”
Astrophys. J.
159
,
629
(
1970
).
4.
F. H.
Busse
, “
Thermal instabilities in rapidly rotating systems
,”
J. Fluid Mech.
44
(
Part 3
),
441
(
1970
).
5.
C. A.
Jones
,
A. M.
Soward
, and
A. I.
Mussa
, “
The onset of thermal convection in a rapidly rotating sphere
,”
J. Fluid Mech.
405
,
157
(
2000
).
6.
E.
Dormy
,
A. M.
Soward
,
C. A.
Jones
,
D.
Jault
, and
P.
Cardin
, “
The onset of thermal convection in rotating spherical shells
,”
J. Fluid Mech.
501
,
43
(
2004
).
7.
K. K.
Zhang
and
X.
Liao
, “
A new asymptotic method for the analysis of convection in a rapidly rotating sphere
,”
J. Fluid Mech.
518
,
319
(
2004
).
8.
K. K.
Zhang
,
X.
Liao
, and
F. H.
Busse
, “
Asymptotic solutions of convection in rapidly rotating non-slip spheres
,”
J. Fluid Mech.
578
,
371
(
2007
).
9.
K.
Zhang
and
F. H.
Busse
, “
On the onset of convection in rotating spherical shells
,”
Geophys. Astrophys. Fluid Dyn.
39
,
119
(
1987
).
10.
K.
Zhang
, “
Spiralling columnar convection in rapidly rotating spherical fluid shells
,”
J. Fluid Mech.
236
,
535
(
1992
).
11.
M.
Ardes
,
F. H.
Busse
, and
J.
Wicht
, “
Thermal convection in rotating spherical shells
,”
Phys. Earth Planet. Inter.
99
,
55
(
1997
).
12.
A.
Tilgner
and
F. H.
Busse
, “
Finite-amplitude convection in rotating spherical fluid shells
,”
J. Fluid Mech.
332
,
359
(
1997
).
13.
U.
Christensen
, “
Zonal flow driven by strongly supercritical convection in rotating spherical shells
,”
J. Fluid Mech.
470
,
115
(
2002
).
14.
R.
Simitev
and
F. H.
Busse
, “
Patterns of convection in rotating spherical shells
,”
New J. Phys.
5
,
97
(
2003
).
15.
M.
Heimpel
and
J.
Aurnou
, “
Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn
,”
Icarus
187
,
540
(
2007
).
16.
K.
Kimura
,
S.
Takehiro
, and
M.
Yamada
, “
Stability and bifurcation diagram of Boussinesq thermal convection in a moderately rotating spherical shell
,”
Phys. Fluids
23
,
074101
(
2011
).
17.
F.
Feudel
,
K.
Bergemann
,
L. S.
Tuckerman
,
M.
Gellert
, and
R.
Hollerbach
, “
Convection patterns in a spherical shell
,”
Phys. Rev. E
83
,
046304
(
2011
).
18.
C.
Egbers
,
W.
Beyer
,
A.
Bonhage
,
R.
Hollerbach
, and
P.
Beltrame
, “
The geoflow-experiment on ISS (part I): Experimental preparation and design of laboratory testing hardware
,”
Adv. Space Res.
32
,
171
(
2003
).
19.
J.
Tromp
, “
Inner-core anisotropy and rotation
,”
Annu. Rev. Earth Planet. Sci.
29
,
47
(
2001
).
20.
A.
Souriau
,
R.
Garcia
, and
G.
Poupinet
, “
The seismological picture of the inner core: structure and rotation
,”
C. R. Geosci.
335
,
51
(
2003
).
21.
J.
Zhang
,
X.
Song
,
Y.
Li
,
P. G.
Richards
,
X.
Sun
, and
F.
Waldhauser
, “
Inner core differential motion confirmed by earthquake waveform doublets
,”
Science
309
,
1357
(
2005
).
22.
K.
Kimura
,
S.
Takehiro
, and
M.
Yamada
, “
Torques on the inner and outer spheres induced by the Boussinesq thermal convection in a rotating spherical shell
,”
J. Phys. Soc. Jpn.
81
,
084401
(
2012
).
23.
K.
Araki
,
S.
Yanase
, and
J.
Mizushima
, “
Symmetry breaking by differential rotation and saddle-node bifurcation of the thermal convection in a spherical shell
,”
J. Phys. Soc. Jpn.
65
(
12
),
3862
(
1996
).
24.
G. A.
Glatzmaier
and
P. H.
Roberts
, “
A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle
,”
Phys. Earth Planet. Inter.
91
,
63
(
1995
).
25.
J.
Aurnou
and
P.
Olson
, “
Control of inner core rotation by electromagnetic, gravitational and mechanical torques
,”
Phys. Earth Planet. Inter.
117
,
111
(
2000
).
26.
R.
Hollerbach
, “
A spectral solution of the magneto-convection equations in spherical geometry
,”
Int. J. Numer. Methods Fluids
32
,
773
(
2000
).
27.
U. R.
Christensen
,
J.
Aubert
,
P.
Cardin
,
E.
Dormy
,
S.
Gibbons
,
G. A.
Glatzmaier
,
E.
Grote
,
Y.
Honkura
,
C.
Jones
,
M.
Kono
,
M.
Matsushima
,
A.
Sakuraba
,
F.
Takahashi
,
A.
Tilgner
,
J.
Wicht
, and
K.
Zhang
, “
A numerical dynamo benchmark
,”
Phys. Earth Planet. Inter.
128
,
25
(
2001
).
28.
J.
Aubert
and
M.
Dumberry
, “
Steady and fluctuating inner core rotation in numerical geodynamo models
,”
Geophys. J. Int.
184
,
162
(
2011
).
29.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
, 2nd ed., Course of Theoretical Physics Vol.
6
(
Reed Educational and Professional Publishing Ltd
,
Oxford
,
1987
), 539 pp.
30.
I.
Proudman
, “
The almost-rigid rotation of viscous fluid between concentric spheres
,”
J. Fluid Mech.
1
,
505
(
1956
).
31.
K.
Stewartson
, “
On almost rigid rotations Part 2
,”
J. Fluid Mech.
26
,
131
(
1966
).
32.
R.
Hollerbach
, “
Magnetohydrodynamic Ekman and Stewartson layers in a rotating spherical shell
,”
Proc. R. Soc. London, Ser. A
444
,
333
(
1994
).
33.
E.
Dormy
,
P.
Cardin
, and
D.
Jault
, “
MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field
,”
Earth Planet. Sci. Lett.
160
,
15
(
1998
).
34.
S.
Takehiro
, “
On the retrograde propagation of critical thermal convection in a slowly rotating spherical shell
,”
J. Fluid Mech.
659
,
505
(
2010
).
You do not currently have access to this content.