This paper reports the first observations of transition from a pre-vortex breakdown (Pre-VB) flow reversal to a fully developed central toroidal recirculation zone in a non-reacting, double-concentric swirling jet configuration and its response to longitudinal acoustic excitation. This transition proceeds with the formation of two intermediate, critical flow regimes. First, a partially penetrated vortex breakdown bubble (VBB) is formed that indicates the first occurrence of an enclosed structure as the centre jet penetration is suppressed by the growing outer roll-up eddy; resulting in an opposed flow stagnation region. Second, a metastable transition structure is formed that marks the collapse of inner mixing vortices. In this study, the time-averaged topological changes in the coherent recirculation structures are discussed based on the non-dimensional modified Rossby number (Rom) which appears to describe the spreading of the zone of swirl influence in different flow regimes. Further, the time-mean global acoustic response of pre-VB and VBB is measured as a function of pulsing frequency using the relative aerodynamic blockage factor (i.e., maximum radial width of the inner recirculation zone). It is observed that all flow modes except VBB are structurally unstable as they exhibit severe transverse radial shrinkage (∼20%) at the burner Helmholtz resonant modes (100–110 Hz). In contrast, all flow regimes show positional instability as seen by the large-scale, asymmetric spatial shifting of the vortex core centres. Finally, the mixing transfer function M (f) and magnitude squared coherence λ2(f) analysis is presented to determine the natural coupling modes of the system dynamic parameters (u′, p′), i.e., local acoustic response. It is seen that the pre-VB flow mode exhibits a narrow-band, low pass filter behavior with a linear response window of 100–105 Hz. However, in the VBB structure, presence of critical regions such as the opposed flow stagnation region alters the linearity range with the structure showing a response even at higher pulsing frequencies (100–300 Hz).

1.
A. K.
Gupta
, “
Gas turbine combustion: Prospects and challenges
,”
Energy Convers. Manage.
38
,
1311
(
1997
).
2.
U.
Idahosa
, “
Combustion dynamics and fluid mechanics in acoustically perturbed non-premixed swirl-stabilized flames
,” Ph.D. thesis (
University of Central Florida
, FL,
2010
).
3.
N.
Syred
,
N. A.
Chiger
, and
J. M.
Beer
, “
Flame stabilization in recirculation zones of jets with swirl
,”
Sym. (Int.) Combust., [Proc.]
13
,
617
(
1971
).
4.
R. H.
Chen
and
J. F.
Driscoll
, “
The role of the recirculation vortex in improving fuel-air mixing within swirling flames
,”
Sym. (Int.) Combust., [Proc.]
22
,
531
(
1989
).
5.
Y.
Huang
and
V.
Yang
, “
Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor
,”
Proc. Combust. Inst.
30
,
1775
(
2005
).
6.
N.
Syred
, “
A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems
,”
Prog. Energy Combust. Sci.
32
,
93
(
2006
).
7.
A. K.
Gupta
,
D. G.
Lilley
, and
N.
Syred
,
Swirl Flows
(
Abacus Press
,
1984
).
8.
F. C.
Gouldin
,
J. S.
Depsky
, and
S.-L.
Lee
, “
Velocity field characteristics of a swirling flow combustor
,”
AIAA J.
23
,
95
(
1985
).
9.
N.
Syred
and
J. M.
Beer
, “
Combustion in swirling flows: A review
,”
Combust. Flame
23
,
143
(
1974
).
10.
M. G.
Hall
, “
Vortex breakdown
,”
Annu. Rev. Fluid Mech.
4
,
195
(
1972
).
11.
J. K.
Harvey
, “
Some observations of the vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
585
(
1962
).
12.
T.
Sarpkaya
, “
On stationary and travelling vortex breakdown
,”
J. Fluid Mech.
45
,
545
(
1971
).
13.
J. H.
Faler
and
S.
Leibovich
, “
An experimental map of the internal structure of a vortex breakdown
,”
J. Fluid Mech.
86
,
313
(
1978
).
14.
J.
Panda
and
D. K.
McLaughlin
, “
Experiments on the instabilities of a swirling jet
,”
Phys. Fluids
6
,
263
(
1994
).
15.
P.
Billant
,
J. M.
Chomaz
, and
P.
Huerre
, “
Experimental study of vortex breakdown in swirling jets
,”
J. Fluid Mech.
376
,
183
(
1998
).
16.
O.
Lucca-Negro
and
T.
ODoherty
, “
Vortex breakdown: A review
,”
Prog. Energy Combust. Sci.
27
,
431
(
2001
).
17.
P.
Iudiciani
and
C.
Duwig
, “
Large eddy simulation of the sensitivity of vortex breakdown and ame stabilisation to axial forcing
,”
Flow, Turbul. Combust.
86
,
639
(
2011
).
18.
S.
Khalil
,
K.
Hourigan
, and
M. C.
Thompson
, “
Response of unconned vortex breakdown to axial pulsing
,”
Phys. Fluids
18
,
038102
(
2006
).
19.
A.
Lacarelle
,
T.
Faustmann
,
D.
Greenblatt
,
C. O.
Paschereit
,
O.
Lehmann
,
D. M.
Luchtenburg
, and
B. R.
Noack
, “
Spatio-temporal characterization of a conical swirler flow field under strong forcing
,”
J. Eng. Gas Turbines Power
131
,
031504
(
2009
).
20.
S. V.
Alekseenko
,
V. M.
Dulin
,
Y. S.
Kozorezov
, and
D. M.
Markovich
, “
Effect of axisymmetric forcing on the structure of a swirling turbulent jet
,”
Int. J. Heat Fluid Flow
29
,
1699
(
2008
).
21.
I.
Gursul
, “
Effect of nonaxisymmetric forcing on a swirling jet with vortex breakdown
,”
J. Fluids Eng.
118
,
316
(
1996
).
22.
J.
O’Connor
and
T.
Lieuwen
, “
Recirculation zone dynamics of a transversely excited swirl flow and flame
,”
Phys. Fluids
24
,
075107
(
2012
).
23.
F.
Gallaire
,
S.
Rott
, and
J. M.
Chomaz
, “
Experimental study of a free and forced swirling jet
,”
Phys. Fluids
16
,
2907
(
2004
).
24.
S.
Ducruix
,
D.
Durox
, and
S.
Candel
, “
Theoretical and experimental determinations of the transfer function of a laminar premixed flame
,”
Proc. Combust. Inst.
28
,
765
(
2000
).
25.
C.
Kulsheimer
and
H.
Buchner
, “
Combustion dynamics of turbulent swirling flames
,”
Combust. Flame
131
,
70
(
2002
).
26.
D.
Durox
,
T.
Schuller
, and
S.
Candel
, “
Combustion dynamics of inverted conical flames
,”
Proc. Combust. Inst.
30
,
1717
(
2005
).
27.
U.
Idahosa
,
A.
Saha
,
C.
Xu
, and
S.
Basu
, “
Non-premixed acoustically perturbed swirling flame dynamics
,”
Combust. Flame
157
,
1800
(
2010
).
28.
K.
Zahringer
,
D.
Durox
, and
F.
Lacas
, “
Helmholtz behaviour and transfer function of an industrial fuel swirl burner used in heating systems
,”
Int. J. Heat Mass Transfer
46
,
3539
(
2003
).
29.
M.
Fleifil
,
A. M.
Annaswamy
,
Z. A.
Ghoneim
, and
A. F.
Ghoneim
, “
Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results
,”
Combust. Flame
106
,
487
(
1996
).
30.
T.
Lieuwen
, “
Nonlinear kinematic response of premixed flames to harmonic velocity disturbances
,”
Proc. Combust. Inst.
30
,
1725
(
2005
).
31.
P.
Palies
,
D.
Durox
,
T.
Schuller
, and
S.
Candel
, “
The combined dynamics of swirler and turbulent premixed swirling flames
,”
Combust. Flame
157
,
1698
(
2010
).
32.
A.
Melling
, “
Tracer particles and seeding for particle image velocimetry
,”
Meas. Sci. Technol.
8
,
1406
(
1997
).
33.
R.
Mei
, “
Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number
,”
J. Fluid Mech.
270
(
1
),
133
(
1994
).
34.
R.
Mei
and
R. J.
Adrian
, “
Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number
,”
J. Fluid Mech.
237
(
1
),
323
(
1992
).
35.
C.
Tropea
,
A. L.
Yarin
, and
J. F.
Foss
,
Springer Handbook of Experimental Fluid Mechanics
(
Springer
,
2007
), p.
289
.
36.
A. K.
Prasad
,
R. J.
Adrian
,
C. C.
Landreth
, and
P. W.
Offutt
, “
Effect of resolution on the speed and accuracy of particle image velocimetry interrogation
,”
Exp. Fluids
13
,
105
(
1992
).
37.
A.
Saha
,
S.
Basu
, and
R.
Kumar
, “
Particle image velocimetry and infrared thermography in a levitated droplet with nanosilica suspensions
,”
Exp. Fluids
52
,
795
(
2012
).
38.
F. H.
Champagne
and
S.
Kromat
, “
Experiments on the formation of a recirculation zone in swirling coaxial jets
,”
Exp. Fluids
29
,
494
(
2000
).
39.
A.
Giannadakis
,
K.
Perrakis
, and
Th.
Panidis
, “
A swirling jet under the influence of a coaxial flow
,”
Exp. Therm. Fluid Sci.
32
,
1548
(
2008
).
40.
A.
Giannadakis
,
A.
Romeos
,
K.
Perrakis
, and
Th.
Panidis
, “
Mixing characteristics of a coaxial swirling jet: An experimental study
,” in
Proceedings of the ETMM8-8th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements
,
2010
.
41.
T.
Poinsot
,
F.
Nicoud
, and
A.
Giauque
, “
Validation of a flame transfer function reconstruction method for complex turbulent configurations
,” in
Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference, Vancouver, BC, Canada
,
2008
, Paper No. 2008-2943.
42.
J. S.
Bendat
and
A. G.
Piersol
,
Random Data: Analysis and Measurement Procedures
, 2nd ed. (
John Wiley and Sons
,
1986
).
43.
H.
Rehab
,
E.
Villermaux
, and
E. J.
Hopfinger
, “
Flow regimes of large-velocity-ratio coaxial jets
,”
J. Fluid Mech.
345
,
357
(
1997
).
You do not currently have access to this content.