We present the exact small-amplitude linear Laplace-transform theory describing the propagation of an initially planar detonation front through a gaseous mixture with nonuniform density perturbations, complementing earlier normal-mode results for nonuniform velocity perturbations. The investigation considers the fast-reaction limit in which the detonation thickness is much smaller than the size of the density perturbations, so that the detonation can be treated as an infinitesimally thin front with associated jump conditions given by the Rankine-Hugoniot equations. The analytical development gives the exact transient evolution of the detonation front and the associated disturbance patterns generated behind for a single-mode density field, including explicit expressions for the distributions of density, pressure, and velocity. The results are then used in a Fourier analysis of the detonation interaction with two-dimensional and three-dimensional isotropic density fields to provide integral formulas for the kinetic energy, enstrophy, and density amplification. Dependencies of the solution on the heat-release parameter and propagation Mach number are discussed, along with differences and similarities with results of previous analyses for non-reacting shock waves.

1.
H. S.
Ribner
, “
Convection of a pattern of vorticity through a shock wave
,” NACA Report 1164,
1954
.
2.
H. S.
Ribner
, “
Shock-turbulence interaction and the generation of noise
,” NACA Report 1233,
1955
.
3.
H. S.
Ribner
, “
Spectra of noise and amplified turbulence emanating from shock-turbulence interaction
,”
AIAA J.
25
,
436
(
1987
).
4.
S.
Lee
,
S. K.
Lele
, and
P.
Moin
, “
Interaction of isotropic turbulence with shock waves: effect of shock strength
,”
J. Fluid Mech.
340
,
225
247
(
1997
).
5.
K.
Mahesh
,
S. K.
Lele
, and
P.
Moin
, “
The influence of entropy fluctuations on the interaction of turbulence with a shock wave
,”
J. Fluid Mech.
334
,
353
379
(
1997
).
6.
J.
Larsson
and
S. K.
Lele
, “
Direct numerical simulation of canonical shock/turbulence interaction
,”
Phys. Fluids
21
,
126101
(
2009
).
7.
J. G.
Wouchuk
,
C. Huete Ruiz
de Lira
, and
A. L.
Velikovich
, “
Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field
,”
Phys. Rev. E
79
,
066315
(
2009
).
8.
C. Huete Ruiz
de Lira
,
A. L.
Velikovich
, and
J. G.
Wouchuk
, “
Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic density field
,”
Phys. Rev. E
83
,
056320
(
2011
).
9.
B. T.
Draine
and
C. F.
McKee
, “
Theory of interstellar shocks
,”
Annu. Rev. Astron. Astrophys.
31
,
373
432
(
1993
).
10.
D.
Mihalas
and
B. W.
Mihalas
,
Foundations of Radiation Hydrodynamics
(
Dover Publications
,
New York
,
1999
).
11.
R. J. R.
Williams
, “
On the instability of D-type ionization fronts
,”
Mon. Not. R. Astron. Soc.
331
,
693
706
(
2002
).
12.
N.
Kevlahan
and
R. E.
Pudritz
, “
Shock-generated vorticity in the interstellar medium and the origin of the stellar initial mass function
,”
Astrophys. J.
702
,
39
(
2009
).
13.
A.
Marcowith
and
F.
Casse
, “
Postshock turbulence and diffusive shock acceleration in young supernova remnants
,”
Astron. Astrophys.
515
,
A90
(
2010
).
14.
T. L.
Jackson
,
A. K.
Kapila
, and
M. Y.
Hussaini
, “
Convection of a pattern of vorticity through a reacting shock wave
,”
Phys. Fluids A
2
,
1260
(
1990
).
15.
T. L.
Jackson
,
M. Y.
Hussaini
, and
H. S.
Ribner
, “
Interaction of turbulence with a detonation wave
,”
Phys. Fluids A
5
,
745
749
(
1993
).
16.
L.
Massa
,
M.
Chauhan
, and
F. K.
Lu
, “
Detonation-turbulence interaction
,”
Combust. Flame
158
,
1788
1806
(
2011
).
17.
L.
Massa
and
F. K.
Lu
, “
The role of the induction zone on the detonation-turbulence linear interaction
,”
Combust. Theory Modell.
15
,
347
371
(
2011
).
18.
B. T.
Chu
and
L. S. G.
Kovásznay
, “
Non-linear interactions in a viscous heat-conducting compressible gas
,”
J. Fluid Mech.
3
,
494
514
(
1958
).
19.
A. D.
Young
, “
The equations of motion and energy and the velocity profile of a turbulent boundary layer in a compressible fluid
,”
College of Aeronaut.
, Cranfield, Rep. No. 42,
1951
.
20.
M. V.
Morkovin
, “
Effects of compressibility on turbulent flows
,” in
Mechanique de la Turbulence
, edited by
A.
Favre
(
CNRS
,
1962
), pp.
367
380
.
21.
J. J.
Erpenbeck
, “
Stability of idealized one-reaction detonations
,”
Phys. Fluids
7
,
684
696
(
1964
).
22.
W.
Fickett
and
W. W.
Wood
, “
Flow calculations for pulsating one-dimensional detonations
,”
Phys. Fluids
9
,
903
916
(
1966
).
23.
M.
Short
and
D. S.
Stewart
, “
The multi-dimensional stability of weak-heat-release detonations
,”
J. Fluid Mech.
382
,
109
135
(
1999
).
24.
R.
Daou
and
P.
Clavin
, “
Instability threshold of gaseous detonations
,”
J. Fluid Mech.
482
,
181
206
(
2003
).
25.
P.
Clavin
and
F. A.
Williams
, “
Analytical studies of the dynamics of gaseous detonations
,”
Philos. Trans. R. Soc. A
370
,
597
624
(
2012
).
26.
A. K.
Oppenheim
, “
Novel insight into the structure and development of detonation
,”
Acta Astronaut.
11
,
391
(
1965
).
27.
K. I.
Shchelkin
and
Ya. K.
Troshin
,
Gasdynamics of Combustion
(
Mono Book Corporation
,
Baltimore
,
1965
), Chap. 1.
28.
R. A.
Strehlow
,
Combustion Fundamentals
(
McGraw-Hill
,
New York
,
1984
), Chap. 9.
29.
F. A.
Williams
,
Combustion Theory
, 2nd ed. (
Benjamin Cummings
,
Menlo Park, CA
,
1985
), pp.
20
33
.
30.
C.
Huete
,
J. G.
Wouchuk
,
B.
Canaud
, and
A. L.
Velikovich
, “
Analytical linear theory for the shock and re-shock of isotropic density inhomogeneities
,”
J. Fluid Mech.
700
,
214
245
(
2012
).
31.
C.
Huete
,
J. G.
Wouchuk
, and
A. L.
Velikovich
, “
Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic acoustic wave field
,”
Phys. Rev. E
85
,
026312
(
2012
).
32.
A. G.
Webster
,
Partial Differential Equations of Mathematical Physics
(
Dover Publications
,
New York
,
1955
), p.
253
.
33.
P. M.
Zaidel'
, “
Shock wave from a slightly curved piston
,”
J. Appl. Math. Mech.
24
,
316
327
(
1960
).
34.
G.
Fraley
, “
Rayleigh–Taylor stability for a normal shock wave-density discontinuity interaction
,”
Phys. Fluids
29
,
376
386
(
1986
).
You do not currently have access to this content.