Porous materials have long been known to be effective in energy absorption and shock wave attenuation. These properties make them attractive in blast mitigation strategies. Nano-structured materials have an even greater potential for blast mitigation because of their high surface-to-volume ratio, a geometric parameter which substantially attenuates shock wave propagation. A molecular dynamics approach was used to explore the effects of this remarkable property on the behavior of traveling shocks impacting on solid materials. The computational setup included a moving piston, a gas region and a target solid wall with and without a porous structure. The gas and porous solid were modeled by Lennard-Jones-like and effective atom potentials, respectively. The shock wave is resolved in space and time and its reflection from a solid wall is gradual, due to the wave's finite thickness, and entails a self-interaction as the reflected wave travels through the incoming incident wave. Cases investigated include a free standing porous structure, a porous structure attached to a wall and porous structures with graded porosity. The effects of pore shape and orientation have been also documented. The results indicate that placing a nano-porous material layer in front of the target wall reduced the stress magnitude and the energy deposited inside the solid by about 30 percent, while at the same time substantially decreasing the loading rate.

1.
A. K.
Al-Qananwah
,
J.
Koplik
, and
Y.
Andreopoulos
, “
Shock wave interactions with nano-structured materials: a molecular dynamics approach
,”
Shock Waves
23
(
1
),
69
80
(
2013
).
2.
D. H.
Tsai
and
S. F.
Trevino
, “
Thermal relaxation in a dense liquid under shock compression
,”
Phys. Rev. A
24
(
5
),
2743
2757
(
1981
).
3.
B. L.
Holian
,
W. G.
Hoover
,
B.
Moran
, and
G. K.
Straub
, “
Shockwave structure via non-equilibrium molecular dynamics and Navier-Stokes continuum mechanics
,”
Phys. Rev. A
22
(
6
),
2798
2808
(
1980
).
4.
B. L.
Holian
, “
Modeling shock wave deformation via molecular dynamics
,”
Phys. Rev. A
37
(
7
),
2562
2672
(
1988
).
5.
M.
Woo
and
I.
Greber
, “
Molecular dynamics simulation of piston-driven shock wave in hard sphere gas
,”
AIAA J.
37
(
2
),
215
221
(
1999
).
6.
W. G.
Hoover
, “
Structure of a shock-wave front in a liquid
,”
Phys. Rev. Lett.
42
,
1531
1534
(
1979
).
7.
S.
Schlamp
,
B. C.
Hathorn
,
T. E.
Hofmann
, and
P.
Sim
, “
Shock wave structure in dense nitrogen: Steady-state profile and unsteady processes
,” AIAA Paper 2005-5212,
2005
.
8.
R. S.
Sinkovits
and
S.
Sen
, “
Nonlinear dynamics in granular columns
,”
Phys. Rev. Lett.
74
(
14
),
2686
2689
, (
1995
)
9.
M. W.
Gong
and
Y.
Andreopoulos
, “
Shock wave impact on monolithic and composite material plates: The preferential aeroelastic response
,”
J. Sound Vib.
313
,
171
194
(
2008
).
10.
M. W.
Gong
and
Y.
Andreopoulos
, “
Coupled fluid–structure solver: The case of shock wave impact on monolithic and composite material plates
,”
J. Comput. Phys.
228
,
4400
4434
(
2009
).
11.
K.
Subramaniam
,
W.
Nian
, and
Y.
Andreopoulos
, “
Response of an elastic structure subject to air shock considering fluid-structure interaction
,”
Int. J. Impact Eng.
36
,
965
974
(
2009
).
12.
Y.
Andreopoulos
,
S.
Xanthos
, and
K.
Subramaniam
, “
Moving shocks through metallic grids: their interaction and potential for blast wave mitigation
,”
Shock Waves
16
(
6
),
455
466
(
2007
).
13.
M. W.
Seitz
and
B. W.
Skews
, “
Effect of compressible foam properties on pressure amplification during shock wave impact
,”
Shock Waves
15
,
177
197
(
2006
)
14.
M. W.
Seitz
and
B. W.
Skews
, “
Shock impact on porous plugs with a fixed gap between the plug and a wall
,” in
Proceedings of the 20th International Symposium on Shock Waves
, edited by
B.
Sturtevant
,
J. E.
Shepherd
, and
H. G.
Hornung
(
World Scientific
,
Singapore
,
1996
).
15.
V.
Kazemi-Kamyab
,
K.
Subramaniam
, and
Y.
Andreopoulos
, “
Stress transmission in porous materials impacted by shock waves
,”
J. Appl. Phys.
109
(
1
),
013523
(
2011
).
16.
D.
Smeulders
and
M. E. H.
van Dongen
, “
Linear waves and shock waves in flexible and rigid porous media
,” in
Shock Wave Science and Technology Reference Library
, edited by
M. E. H.
van Dongen
(
Springer
,
2007
), Vol.
1
.
17.
B. W.
Skews
,
M. D.
Atkins
, and
M. W.
Seitz
,“
The impact of a shock wave on porous compressible foams
,”
J. Fluid Mech.
253
,
245
265
, (
1993
).
18.
G.
Mazor
,
G.
Ben-Dor
,
O.
Igra
, and
S.
Sorek
, “
Shock wave interaction with cellular materials: I. Analytical investigation and governing equations
,”
Shock Waves
3
,
159
165
(
1994
).
19.
M. R.
Baer
and
N. W.
Nunziato
, “
A two-phase mixture theory for the deflagration-to-detonation transition in reactive granular materials
,”
Int. J. Multiphase Flow
12
,
861
889
(
1986
).
20.
M. A.
Biot
, “
General theory of three dimensional consolidation
,”
J. Appl. Phys.
12
,
155
164
(
1941
).
21.
A.
Levy
,
S.
Sorek
,
G.
Ben-Dor
, and
J.
Bear
, “
Evolution of the balance equations in saturated thermoelastic porous media following abrupt simultaneous changes in pressure and temperature
,”
Transp. Porous Media
21
,
241
268
(
1995
).
22.
J.
Bear
and
Y.
Bachmat
,
Introduction to Modeling Transport Phenomena in Porous Media
(
Klumer
,
Dordrecht
,
1990
).
23.
A. A.
Gubaidullin
,
A.
Britan
, and
D. N.
Dudko
, “
Air shock wave interaction with an obstacle covered by porous material
,”
Shock Waves
13
,
41
48
(
2003
)
24.
J. G. M.
van deer Grinten
, “
An experimental study of shock-induced wave propagation in dry water-saturated, and partially saturated porous media
,” Ph.D. thesis (
Eindhoven University of Technology
, The Netherlands,
1987
).
25.
A.
Levy
,
G.
Ben-Dor
,
B. W.
Skews
, and
S.
Sorek
, “
Head-on collision of normal shock waves with rigid porous materials
,”
Exp. Fluids
15
,
183
190
(
1993
).
26.
M. E. H.
van Dongen
,
D. M. J.
Smeulders
,
T.
Kitarnura
, and
K.
Takayama
, “
On the modeling of wave phenomena in permeable foam
,” in
Proceedings 19th International Symposium on Shock Waves
, edited by
R.
Brun
and
L. Z.
Dumitrescu
(
Springer-Verlag
,
Marseille
,
1995
), Vol.
III
, pp.
163
168
.
27.
M.
Yasuhara
,
S.
Watanabe
,
K.
Kitagawa
,
T.
Yasue
, and
M.
Mizutani
, “
Experiment on effects of porosity in the interaction of shock wave and foam
,”
JSME Int. J., Ser. B
39
,
287
293
(
1996
).
28.
K.
Kitagawa
,
K.
Takayama
, and
M.
Yasuhara
, “
Attenuation of shock waves propagating in polyurethane foams
,”
Shock Waves
15
,
437
445
(
2006
).
29.
A.
Britan
and
G.
Ben-Dor
, “
Gas filtration during the impact of weak shock waves on granular layers
,”
Int. J. Multiphase Flow
32
,
623
631
(
2006
).
30.
G.
Ben-Dor
,
A.
Britan
,
T.
Elperin
,
O.
Igra
, and
J. P.
Jiang
, “
Experimental investigation of the interaction between weak shock waves and granular layers
,”
Exp. Fluids
22
,
432
443
(
1997
).
31.
M. P.
Allen
and
D. J.
Tildesley
,
Molecular Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
32.
J.
Koplik
and
J. R.
Banavar
, “
Continuum deductions from molecular hydrodynamics
,”
Annu. Rev. Fluid Mech.
27
,
257
292
(
1995
).
33.
S.
Hess
and
M.
Kroger
, “
Thermophysical properties of gases, liquids and solids composed of particles interacting with a short-range attractive potential
,”
Phys. Rev. E
64
,
011201
(
2001
).
34.
S.
Hess
and
M.
Kroger
, “
Elastic and plastic behavior of model solids
,” Technische Mechanik, Band 22, Heft 2,
2002
, http://www.ovgu.de/ifme/zeitschrift_tm/2002_Heft2/hess.pdf.
35.
I.
Stankovic
,
S.
Hess
, and
M.
Kroger
, “
Structural changes and viscoplastic behavior of a generic embedded-atom model metal in steady shear flow
,”
Phys. Rev. E
69
,
021509
(
2004
).
36.
A. K.
Al-Qananwah
, “
Molecular dynamics of shock wave interaction with nanoscale structured materials
,” Ph.D. thesis (
Graduate School and University Center of CUNY
,
2012
).
You do not currently have access to this content.