Thermal transpiration is the macroscopic movement induced in a rarefied gas by a temperature gradient. The gas moves from the lower to the higher temperature zone. An original method is proposed here to measure the stationary mass flow rate of gas created by thermal transpiration in a micro-tube heated at its outlet. In addition, by means of a time-dependent study, parameters such as the pressure variation, the pressure variation speed, and the characteristic time of the system are analyzed. The experimental system is composed of a glass tube of circular cross section and two reservoirs positioned one at the inlet and one at the outlet of the capillary. The reservoirs are connected to two fast response time capacitance diaphragm gauges. By monitoring the pressure variation with time inside both reservoirs, it is possible to measure the macroscopic movement of the gas along the tube. Three gases, nitrogen, argon, and helium, are studied and three temperature differences ΔT = 37, 53.5, and 71 K are applied to the tube. The analyzed gas rarefaction conditions vary from near free molecular to slip regime. Finally, Poiseuille counter flows consistent with the experimental zero flow conditions of the thermal transpiration process are proved to be possible.

1.
O.
Reynolds
, “
On certain dimensional properties of matter in the gaseous state. Parts I and II
,”
Philos. Trans. R. Soc. London
170
,
727
845
(
1879
).
2.
J.
Maxwell
, “
On stresses in rarified gases arising from inequalities of temperature
,”
Philos. Trans. R. Soc. London
170
,
231
256
(
1879
).
3.
M.
Knudsen
, “
Eine revision der gleichgewichtsbedingung der gase. Thermische molekularstromung
,”
Ann. Phys.
336
,
205
229
(
1909
).
4.
M.
Knudsen
, “
The kinetic theory of gases. Some modern aspects
,”
J. Phys. Chem.
39
,
307
(
1935
).
5.
S.
Weber
and
G.
Schmidt
, Commun. Leiden. Rapp. et Commun. 7e
Congr. intern. du Froid
246c
,
72
(
1936
).
6.
S.
Liang
, “
Some measurements of thermal transpiration
,”
J. Appl. Phys.
22
,
148
(
1951
).
7.
S.
Liang
, “
On the calculation of thermal transpiration
,”
J. Phys. Chem.
57
,
910
911
(
1953
).
8.
A.
Rosenberg
and
C.
Martel
 Jr.
, “
Thermal transpiration of gases at low pressures
,”
J. Phys. Chem.
62
,
457
459
(
1958
).
9.
R.
Watkins
,
W.
Taylor
, and
W.
Haubach
, “
Thermomolecular pressure difference measurements for precision helium-3 and helium-4 vapor-pressure thermometry
,”
J. Chem. Phys.
46
,
1007
(
1967
).
10.
M.
Bennett
and
F.
Tompkins
, “
Thermal transpiration: application of Liang's equation
,”
Trans. Faraday Soc.
53
,
185
192
(
1957
).
11.
F.
Los
and
R.
Fergusson
, “
Measurements of thermomolecular pressure differences on argon and nitrogen
,”
Trans. Faraday Soc.
48
,
730
738
(
1952
).
12.
T.
Takaishi
and
Y.
Sensui
, “
Thermal transpiration effect of hydrogen, rare gases and methane
,”
Trans. Faraday Soc.
59
,
2503
2514
(
1963
).
13.
B.
Annis
, “
Thermal creep in gases
,”
J. Chem. Phys.
57
,
2898
(
1972
).
14.
B.
Porodnov
,
A.
Kulev
, and
F.
Tuchvetov
, “
Thermal transpiration in a circular capillary with a small temperature difference
,”
J. Fluid Mech.
88
,
609
622
(
1978
).
15.
T.
Storvick
,
H.
Park
, and
S.
Loyalka
, “
Thermal transpiration: A comparison of experiment and theory
,”
J. Vac. Sci. Technol.
15
,
1844
(
1978
).
16.
S.
Loyalka
and
J.
Cipolla
 Jr.
, “
Thermal creep slip with arbitrary accommodation at the surface
,”
Phys. Fluids
14
,
1656
(
1971
).
17.
S.
Loyalka
, “
Kinetic theory of thermal transpiration and mechanocaloric effect. II
,”
J. Chem. Phys.
63
,
4054
(
1975
).
18.
S.
Vargo
,
E.
Muntz
,
G.
Shiflett
, and
W.
Tang
, “
Knudsen compressor as a micro-and macroscale vacuum pump without moving parts or fluids
,”
J. Vac. Sci. Technol. A
17
,
2308
(
1999
).
19.
M.
Young
,
Y.
Han
,
E.
Muntz
,
G.
Shiflett
,
A.
Ketsdever
, and
A.
Green
, “
Thermal transpiration in microsphere membranes
,”
AIP Conf. Proc.
663
,
743
751
(
2003
).
20.
A.
Alexeenko
,
S.
Gimelshein
,
E.
Muntz
, and
A.
Ketsdever
, “
Kinetic modeling of temperature driven flows in short microchannels
,”
Int. J. Therm. Sci.
45
,
1045
1051
(
2006
).
21.
Y.
Han
,
E. P.
Muntz
,
A.
Alexeenko
, and
M.
Young
, “
Experimental and computational studies of temperature gradient-driven molecular transport in gas flows through nano/microscale channels
,”
Nanoscale Microscale Thermophys. Eng.
11
,
151
175
(
2007
).
22.
A.
Passian
,
R.
Warmack
,
T.
Ferrell
, and
T.
Thundat
, “
Thermal transpiration at the microscale: a Crookes cantilever
,”
Phys. Rev. Lett.
90
,
124503
(
2003
).
23.
N.
Gupta
and
Y.
Gianchandani
, “
Thermal transpiration in zeolites: A mechanism for motionless gas pumps
,”
Appl. Phys. Lett.
93
,
193511
(
2008
).
24.
N. K.
Gupta
S.
An
, and
Y. B.
Gianchandani
, “
A Si-micromachined 48-stage Knudsen pump for on-chip vacuum
,”
J. Micromech. Microeng.
22
,
105026
(
2012
).
25.
Y.
Sone
,
Molecular Gas Dynamics: Theory, Techniques, and Applications
(
Birkhauser
,
2007
), pp.
237
238
.
26.
Y.
Sone
and
H.
Sugimoto
, “
Vacuum pump without a moving part and its performance
,”
AIP Conf. Proc.
663
,
1041
(
2003
).
27.
H.
Sugimoto
,
S.
Kawakami
, and
K.
Moriuchi
, “
Rarefied gas flows induced through a pair of parallel meshes with different temperatures
,”
AIP Conf. Proc.
1084
,
1021
(
2008
).
28.
M.
Rojas-Cardenas
,
I.
Graur
,
P.
Perrier
, and
J. G.
Meolans
, “
Thermal transpiration flow: A circular cross-section microtube submitted to a temperature gradient
,”
Phys. Fluids
23
,
031702
(
2011
).
29.
M.
Rojas-Cardenas
,
I.
Graur
,
P.
Perrier
, and
J.
Meolans
, “
An experimental and numerical study of the final zero-flow thermal transpiration stage
,”
J. Therm. Sci. Technol.
7
,
437
452
(
2012
).
30.
E.
Arkilic
,
M.
Schmidt
, and
K.
Breuer
, “
Gaseous slip flow in long microchannels
,”
J. Microelectromech. Syst.
6
,
167
178
(
1997
).
31.
T.
Ewart
,
P.
Perrier
,
I.
Graur
, and
J. G.
Méolans
, “
Mass flow rate measurements in gas micro flows
,”
Exp. Fluids
41
,
487
498
(
2006
).
32.
I.
Graur
and
F.
Sharipov
, “
Non-isothermal flow of rarefied gas through a long pipe with elliptic cross section
,”
Microfluid. Nanofluid.
6
,
267
275
(
2009
).
33.
C.
Huang
,
R.
Tompson
,
T.
Ghosh
,
I.
Ivchenko
, and
S.
Loyalka
, “
Measurements of thermal creep in binary gas mixtures
,”
Phys. Fluids
11
,
1662
(
1999
).
34.
T.
Ewart
,
P.
Perrier
,
I.
Graur
, and
J. G.
Méolans
, “
Tangential momentum accommodation in microtube
,”
Microfluid. Nanofluid.
3
,
689
695
(
2007
).
35.
F.
Sharipov
, “
Rarefied gas flow through a long tube at any temperature ratio
,”
J. Vac. Sci. Technol. A
14
,
2627
2635
(
1996
).
You do not currently have access to this content.