We present results of well-resolved direct numerical simulations (DNS) of the turbulent flow evolving from Richtmyer-Meshkov instability (RMI) in a shock-tube with square cross section. The RMI occurs at the interface between a mixture of O2 and N2 (light gas) and SF6 and acetone (heavy gas). The interface between the light and heavy gas is accelerated by a Ma = 1.5 planar shock wave. RMI is triggered by a well-defined multimodal initial disturbance at the interface. The DNS exhibit grid-resolution independent statistical quantities and support the existence of a Kolmogorov-like inertial range with a k−5/3 scaling unlike previous simulations found in the literature. The results are in excellent agreement with the experimental data of Weber et al [“

Turbulent mixing measurements in the Richtmyer-Meshkov instability
,” Phys. Fluids24, 074105 (2012)].

1.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
,
297
(
1960
).
2.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
,
151
(
1969
).
3.
N. J.
Zabusky
, “
Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments
,”
Annu. Rev. Fluid Mech.
31
,
495
(
1999
).
4.
M.
Brouillette
, “
The Richtmyer-Meshkov instability
,”
Annu. Rev. Fluid Mech.
34
,
445
(
2002
).
5.
G. I.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes
,”
Proc. R. Soc. London, Ser. A
201
,
192
(
1950
).
6.
M.
Chertkov
, “
Phenomenology of Rayleigh-Taylor turbulence
,”
Phys. Rev. Lett.
91
,
115001
(
2003
).
7.
W. H.
Cabot
and
A.
Cook
, “
Reynolds number effects on Rayleigh–Taylor instability with possible implications for type-Ia supernovae
,”
Nat. Phys.
2
,
562
(
2006
).
8.
N.
Vladimirova
and
M.
Chertkov
, “
Self-similarity and universality in Rayleigh–Taylor, Boussinesq turbulence
,”
Phys. Fluids
21
,
015102
(
2009
).
9.
G.
Boffetta
,
A.
Mazzino
,
S.
Musacchio
, and
L.
Vozella
, “
Kolmogorov scaling and intermittency in Rayleigh-Taylor turbulence
,”
Phys. Rev. E
79
,
065301
(
2009
).
10.
Y.
Zhou
, “
A scaling analysis of turbulent flows driven by Rayleigh–Taylor and Richtmyer–Meshkov instabilities
,”
Phys. Fluids
13
,
538
(
2001
).
11.
A. N.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Dokl. Akad. Nauk SSSR
30
,
301
(
1941
).
12.
R. H.
Kraichnan
, “
Inertial range spectrum of hydromagnetic turbulence
,”
Phys. Fluids
8
,
1385
(
1965
).
13.
B.
Thornber
,
D.
Drikakis
,
D. L.
Youngs
, and
R. J. R.
Williams
, “
Growth of a Richtmyer-Meshkov turbulent layer after reshock
,”
Phys. Fluids
23
,
095107
(
2011
).
14.
B.
Thornber
,
D.
Drikakis
,
D. L.
Youngs
, and
R. J. R.
Williams
, “
The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability
,”
J. Fluid Mech.
654
,
99
(
2010
).
15.
D. J.
Hill
,
C.
Pantano
, and
D. I.
Pullin
, “
Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock
,”
J. Fluid Mech.
557
,
29
(
2006
).
16.
M.
Lombardini
,
D. I.
Pullin
, and
D. I.
Meiron
, “
Transition to turbulence in shock-driven mixing: A Mach number study
,”
J. Fluid Mech.
690
,
203
(
2012
).
17.
R. H.
Cohen
,
W. P.
Dannevik
,
A. M.
Dimits
,
D. E.
Eliason
,
A. A.
Mirin
,
Y.
Zhou
,
D. H.
Porter
, and
P. R.
Woodward
, “
Three-dimensional simulation of a Richtmyer–Meshkov instability with a two-scale initial perturbation
,”
Phys. Fluids
14
,
3692
(
2002
).
18.
F. F.
Grinstein
,
A. A.
Gowardhan
, and
A. J.
Wachtor
, “
Simulations of Richtmyer–Meshkov instabilities in planar shock-tube experiments
,”
Phys. Fluids
23
,
034106
(
2011
).
19.
C.
Weber
,
N.
Haehn
,
J.
Oakley
,
D.
Rothamer
, and
R.
Bonazza
, “
Turbulent mixing measurements in the Richtmyer-Meshkov instability
,”
Phys. Fluids
24
,
074105
(
2012
).
20.
A. W.
Cook
, “
Enthalpy diffusion in multicomponent flows
,”
Phys. Fluids
21
,
055109
(
2009
).
21.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics
(
Springer-Verlag
,
Berlin
,
1999
).
22.
X. Y.
Hu
,
Q.
Wang
, and
N. A.
Adams
, “
An adaptive central-upwind weighted essentially non-oscillatory scheme
,”
J. Comput. Phys.
229
,
8952
(
2010
).
23.
X. Y.
Hu
and
N. A.
Adams
, “
Scale separation for implicit large eddy simulation
,”
J. Comput. Phys.
230
,
7240
(
2011
).
24.
X. Y.
Hu
,
N. A.
Adams
, and
C.-W.
Shu
, “
Positivity-preserving method for high-order conservative schemes solving compressible Euler equations
,”
J. Comput. Phys.
242
,
169
(
2013
).
25.
V. K.
Tritschler
,
X. Y.
Hu
,
S.
Hickel
, and
N. A.
Adams
, “
Numerical simulation of a Richtmyer-Meshkov instability with an adaptive central-upwind 6th-order WENO scheme
,”
Phys. Scr.
(to be published).
26.
P.
Moin
and
K.
Mahesh
, “
Direct numerical simulation: A tool in turbulence research
,”
Annu. Rev. Fluid Mech.
30
,
539
(
1998
).
27.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge
,
2000
).
28.
G. K.
Batchelor
, “
Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity
,”
J. Fluid Mech.
5
,
113
(
1958
).
29.
P. E.
Dimotakis
, “
Turbulent mixing
,”
Annu. Rev. Fluid Mech.
37
,
329
(
2005
).
30.
M.
Latini
,
O.
Schilling
, and
W. S.
Don
, “
High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability: Comparison to experimental data and to amplitude growth model predictions
,”
Phys. Fluids
19
,
024104
(
2007
).
31.
M.
Latini
,
O.
Schilling
, and
W. S.
Don
, “
Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer–Meshkov instability
,”
J. Comput. Phys.
221
,
805
(
2007
).
32.
O.
Schilling
,
M.
Latini
, and
W. S.
Don
, “
Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability
,”
Phys. Rev. E
76
,
1
(
2007
).
33.
S.
Balasubramanian
,
G. C.
Orlicz
,
K. P.
Prestridge
, and
B. J.
Balakumar
, “
Experimental study of initial condition dependence on Richtmyer-Meshkov instability in the presence of reshock
,”
Phys. Fluids
24
,
034103
(
2012
).
34.
G. K.
Batchelor
and
I.
Proudman
, “
The large-scale structure of homogeneous turbulence
,”
Philos. Trans. R. Soc. London, Ser. A
248
,
369
(
1956
).
35.
P. G.
Saffman
, “
The large-scale structure of homogeneous turbulence
,”
J. Fluid Mech.
27
,
581
(
1967
).
36.
P. G.
Saffman
, “
Note on decay of homogeneous turbulence
,”
Phys. Fluids
10
,
1349
(
1967
).
You do not currently have access to this content.