We experimentally study the behavior of a particle slightly denser than the surrounding liquid in solid body rotating flow. Earlier work revealed that a heavy particle has an unstable equilibrium point in unbounded rotating flows [G. O. Roberts, D. M Kornfeld, and W. W Fowlis, J. Fluid Mech.229, 555

567
(1991)]. In the confinement of the rotational flow by a cylindrical wall a heavy sphere with density 1.05 g/cm3 describes an orbital motion in our experiments. This is due to the effect of the wall near the sphere, i.e., a repulsive force (FW). We model FW on the sphere as a function of the distance from the wall (L): FWL−4 as proposed by Takemura et al [J. Fluid Mech.495, 235
253
(2003)]
. Remarkably, the path evaluated from the model including FW reproduces the experimentally measured trajectory. In addition during an orbital motion the particle does not spin around its axis, and we provide a possible explanation for this phenomenon.

1.
J.
Magnaudet
and
I.
Eames
, “
The motion of high-Reynolds-number bubbles in inhomogeneous flows
,”
Annu. Rev. Fluid Mech.
32
,
659
(
2000
).
2.
E. A. V.
Nierop
,
S.
Luther
,
J. J.
Bluemink
,
J.
Magnaudet
,
A.
Prosperetti
, and
D.
Lohse
, “
Drag and lift forces on bubbles in a rotating flow
,”
J. Fluid Mech.
571
,
439
(
2007
).
3.
J. J.
Bluemink
,
E. A. V.
Nierop
,
S.
Luther
,
N. G.
Deen
,
J.
Magnaudet
,
A.
Prosperetti
, and
D.
Lohse
, “
Asymmetry-induced particle drift in a rotating flow
,”
Phys. Fluids
17
,
072106
(
2005
).
4.
J. J.
Bluemink
,
D.
Lohse
,
A.
Prosperetti
, and
L.
van Wijngaarden
, “
A sphere in a uniformly rotating or shearing flow
,”
J. Fluid Mech.
600
,
1
(
2008
).
5.
J. J.
Bluemink
,
D.
Lohse
,
A.
Prosperetti
, and
L.
van Wijngaarden
, “
Drag and lift forces on particles in a rotating flow
,”
J. Fluid Mech.
643
,
1
(
2010
).
6.
M.
Rastello
,
J.-L.
Marié
,
N.
Grosjean
, and
M.
Lance
, “
Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow
,”
J. Fluid Mech.
624
,
159
(
2009
).
7.
M.
Rastello
,
J.-L.
Marié
, and
M.
Lance
, “
Drag and lift forces on clean spherical and ellipsoidal bubbles in a solid-body rotating flow
,”
J. Fluid Mech.
682
,
434
(
2011
).
8.
G. O.
Roberts
,
D.
Kornfeld
, and
W.
Fowlis
, “
Particle orbits in a rotating liquid
,”
J. Fluid Mech.
229
,
555
567
(
1991
).
9.
F.
Takemura
and
J.
Magnaudet
, “
The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number
,”
J. Fluid Mech.
495
,
235
253
(
2003
).
10.
L.
Zeng
,
S.
Balachandar
, and
P.
Fischer
, “
Wall-induced forces on a rigid sphere at finite Reynolds number
,”
J. Fluid Mech.
536
,
1
(
2005
).
11.
Q.
Liu
and
A.
Prosperetti
, “
Wall effects on a rotating sphere
,”
J. Fluid Mech.
657
,
1
(
2010
).
12.
J.
Ashmore
,
C. D.
Pino
, and
T.
Mullin
, “
Cavitation in a lubrication flow between a moving sphere and a boundary
,”
Phys. Rev. Lett.
94
,
124501
(
2005
).
13.
T.
Mullin
,
Y.
Li
,
C. D.
Pino
, and
J.
Ashmore
, “
An experimental study of fixed points and chaos in the motion of spheres in a Stokes flow
,”
IMA J. Math. Appl. Med. Biol.
70
,
666
(
2005
).
14.
R.
Zimmermann
,
Y.
Gasteuil
,
M.
Bourgoin
,
R.
Volk
,
A.
Pumir
, and
J.-F.
Pinton
, “
Rotational intermittency and turbulence induced lift experienced by large particles in a turbulent flow
,”
Phys. Rev. Lett.
106
,
154501
(
2011
).
15.
I.
Mazzitelli
,
D.
Lohse
, and
F.
Toschi
, “
On the relevance of the lift force in bubbly turbulence
,”
J. Fluid Mech.
488
,
283
(
2003
).
16.
P.
Bagchi
and
S.
Balachandar
, “
Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re
,”
Phys. Fluids
14
,
2719
(
2002
).
17.
C.
Sun
,
T.
Mullin
,
L.
van Wijngaarden
, and
D.
Lohse
, “
Drag and lift forces on a counter-rotating cylinder in rotating flow
,”
J. Fluid Mech.
664
,
150
(
2010
).
You do not currently have access to this content.