Shape oscillations of a spherical bubble or drop, for which part of its interface is fixed due to contact with a solid support, are studied analytically using variational methods. Linear oscillations and irrotational flow are assumed. The present analysis is parallel to those of Strani and Sabetta [“Free vibrations of a drop in partial contact with a solid support,” J. Fluid Mech.141, 233247 (1984)] https://doi.org/10.1017/S0022112084000811; and Bostwick and Steen [“Capillary oscillations of a constrained liquid drop,” Phys. Fluids21, 032108 (2009)] https://doi.org/10.1063/1.3103344 but is also able to determine the response of bubbles or drops to movements imposed on their supports or to variations of their volumes. The analysis leads to equations of motion with a simple structure, from which the eigenmodes and frequency response to periodic forcing are easily determined.

1.
R.
Miller
and
L.
Liggieri
,
Bubble and Drop Interfaces
(
Brill
,
Leiden-Boston
,
2011
).
2.
N.
Abi Chebel
,
F.
Risso
, and
O.
Masbernat
, “
Inertial modes of a periodically forced buoyant drop attached to a capillary
,”
Phys. Fluids
23
,
102104
(
2011
).
3.
W.
Meier
,
G.
Greune
,
A.
Meyboom
, and
K. P.
Hofmann
, “
Surface tension and viscosity of surfactant from the resonance of an oscillating drop
,”
Eur. Biophys. J.
29
,
113
124
(
2000
).
4.
Y.
Tian
,
R. G.
Holt
, and
R. E.
Apfel
, “
Investigations of liquid surface rheology of surfactant solutions by droplet shape oscillations: Theory
,”
Phys. Fluids
7
,
2938
2949
(
1995
).
5.
Y.
Tian
,
R. G.
Holt
, and
R. E.
Apfel
, “
A new method for measuring liquid surface tension with acoustic levitation
,”
Rev. Sci. Instrum.
66
,
3349
3354
(
1995
).
6.
T. J.
Asaki
,
D. B.
Thiessen
, and
P. L.
Marston
, “
Effect of an insoluble surfactant on capillary oscillations of bubbles in water: Observation of a maximum in the damping
,”
Phys. Rev. Lett.
75
,
2686
2689
(
1995
).
7.
T. J.
Asaki
and
P. L.
Marston
, “
Free decay of shape oscillations of bubbles acoustically trapped in water and sea water
,”
J. Fluid Mech.
300
,
149
167
(
1995
).
8.
N.
Abi Chebel
,
J.
Vejrazka
,
O.
Masbernat
, and
F.
Risso
, “
Free oscillations of an oil drop rising in water: Effect of surface contamination
,”
J. Fluid Mech.
702
,
533
542
(
2012
).
9.
J. W. S.
Rayleigh
, “
On the capillary phenomena of jets
,”
Proc. R. Soc. London
29
,
71
97
(
1879
).
10.
H.
Lamb
,
Hydrodynamics
, 6th ed. (
Cambridge University Press
,
Cambridge, England
,
1932
).
11.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1967
).
12.
C. A.
Miller
and
L. E.
Scriven
, “
Oscillations of a fluid droplet immersed in another fluid
,”
J. Fluid Mech.
32
,
417
435
(
1968
).
13.
P. L.
Marston
, “
Shape oscillation and static deformation of drops and bubbles driven by modulated radiation stresses: Theory
,”
J. Acoust. Soc. Am.
67
,
15
26
(
1980
).
14.
J. A.
Tsamopoulos
and
R. A.
Brown
, “
Non-linear oscillations of inviscid drops and bubbles
,”
J. Fluid Mech.
127
,
519
537
(
1983
).
15.
R.
Natarajan
and
R. A.
Brown
, “
Quadratic resonance in the three-dimensional oscillations of inviscid drops with surface tension
,”
Phys. Fluids
29
,
2788
2797
(
1986
).
16.
O. A.
Basaran
, “
Nonlinear oscillations of viscous liquid drops
,”
J. Fluid Mech.
241
,
169
198
(
1992
).
17.
E. H.
Trinh
,
D. B.
Thiessen
, and
R. G.
Holt
, “
Driven and freely decaying nonlinear shape oscillations of drops and bubbles immersed in a liquid: Experimental results
,”
J. Fluid Mech.
364
,
253
272
(
1998
).
18.
H. A.
Stone
and
L. G.
Leal
, “
The effects of surfactants on drop deformation and breakup
,”
J. Fluid Mech.
220
,
161
186
(
1990
).
19.
H. L.
Lu
and
R. E.
Apfel
, “
Shape oscillations of drops in the presence of surfactants
,”
J. Fluid Mech.
222
,
351
368
(
1991
).
20.
Y.
Tian
,
R. G.
Holt
, and
R. E.
Apfel
, “
Investigation of liquid surface rheology of surfactant solutions by droplet shape oscillations: Experiments
,”
J. Colloid Interface Sci.
187
,
1
10
(
1997
).
21.
M.
Strani
and
F.
Sabetta
, “
Free vibrations of a drop in partial contact with a solid support
,”
J. Fluid Mech.
141
,
233
247
(
1984
).
22.
M.
Strani
and
F.
Sabetta
, “
Viscous oscillations of a supported drop in an immiscible fluid
,”
J. Fluid Mech.
189
,
397
421
(
1988
).
23.
J. B.
Bostwick
and
P. H.
Steen
, “
Capillary oscillations of a constrained liquid drop
,”
Phys. Fluids
21
,
032108
(
2009
).
24.
S.
Ramalingam
,
D.
Ramkrishna
, and
O. A.
Basaran
, “
Free vibrations of a spherical drop constrained at an azimuth
,”
Phys. Fluids
24
,
082102
(
2012
).
25.
A.
Prosperetti
, “
Linear oscillations of constrained drops, bubbles, and plane liquid surfaces
,”
Phys. Fluids
24
,
032109
(
2012
).
26.
C.
Bisch
,
A.
Lasek
, and
H.
Rodot
, “
Hydrodynamic behavior of spherical semifree liquid volumes in simulated weightlessness
,”
J. Méc. Théor. Appl.
1
,
165
183
(
1982
).
27.
H.
Rodot
,
C.
Bisch
, and
A.
Lasek
, “
Zero gravity simulation of liquids in contact with a solid surface
,”
Acta Astronaut.
6
,
1083
1092
(
1979
).
28.
R. W.
Smithwick
and
J. A. M.
Boulet
, “
Vibrations of microscopic mercury droplets on glass
,”
J. Colloid Interface Sci.
130
,
588
596
(
1989
).
29.
R. W.
Smithwick
and
J. A. M.
Boulet
, “
Electrically driven oscillations of a mercury-droplet electrode
,”
J. Colloid Interface Sci.
150
,
567
574
(
1992
).
30.
D. W.
DePaoli
,
T. C.
Scott
, and
O. A.
Basaran
, “
Oscillation frequencies of droplets held pendant on a nozzle
,”
Sep. Sci. Technol.
27
,
2071
2082
(
1992
).
31.
D. W.
DePaoli
,
J. Q.
Feng
,
O. A.
Basaran
, and
T. C.
Scott
, “
Hysteresis in forced oscillations of pendant drops
,”
Phys. Fluids
7
,
1181
1183
(
1995
).
32.
B.
Vukasinovic
,
M. K.
Smith
, and
A.
Glezer
, “
Dynamics of a sessile drop in forced vibration
,”
J. Fluid Mech.
587
,
395
423
(
2007
).
33.
O. A.
Basaran
and
D. W.
Depaoli
, “
Nonlinear oscillations of pendant drops
,”
Phys. Fluids
6
,
2923
2943
(
1994
).
34.
E. D.
Wilkes
and
O. A.
Basaran
, “
Forced oscillations of pendant (sessile) drops
,”
Phys. Fluids
9
,
1512
1528
(
1997
).
35.
E. D.
Wilkes
and
O. A.
Basaran
, “
Hysteretic response of supported drops during forced oscillations
,”
J. Fluid Mech.
393
,
333
356
(
1999
).
36.
N.
Abi Chebel
, “
Dynamique et rhéologie interfaciales à haute fréquence d'une goutte oscillante
,” Ph.D. dissertation,
Université de Toulouse
,
2009
.
37.
See supplementary material at http://dx.doi.org/10.1063/1.4810959 for more details of some principal steps of the analysis. They include some useful relations for Legendre polynomials, detailed derivations of the linearized volume constraint and of the constraint of Strani and Sabetta,21,22 calculations of the change in interfacial area, of the kinetic energy, and of the energy dissipation rate. Detailed expressions for the elements of matrices M, D, K and vectors f and fs are provided. The solution for the linearized static shape is given. Details about the eigenproblem evaluation are given.
38.
J. R.
Taylor
,
Classical Mechanics
(
University Science Books
,
Sausalito
,
2005
).
39.
C.
Lanczos
,
The Variational Principles of Mechanics
, 4th ed. (
University of Toronto Press
,
Toronto
,
1970
).
40.
J. B.
Bostwick
and
P. H.
Steen
, “
Coupled oscillations of deformable spherical-cap droplets. Part 1. Inviscid motions
,”
J. Fluid Mech.
714
,
312
335
(
2013
).

Supplementary Material

You do not currently have access to this content.