In this paper, the entrainment and movement of coarse particles on the bed of an open channel is numerically investigated. Rather than model the sediment transport using a concentration concept, this study treats the sediment as individual particles and investigates the interaction between turbulent coherent structures and particle entrainment. The applied methodology is a combination of the direct numerical simulation of turbulent flow, the combined finite-discrete element modeling of particle motion and collision, and the immersed boundary method for the fluid-solid interaction. In this study, flow over a water-worked rough-bed consisting of 2-3 layers of densely packed spheres is adopted and the Shields function is 0.065 which is just above the entrainment threshold to give a bed-load regime. Numerical results for turbulent flow, sediment entrainment statistics, hydrodynamic forces acting on the particles, and the interaction between turbulence coherent structures and particle entrainment are presented. It is shown that the presence of entrained particles significantly modifies the mean velocity and turbulence quantity profiles in the vicinity of a rough-bed and that the instantaneous lift force can be larger than a particle's submerged weight in a narrow region above the effective bed location, although the mean lift force is always smaller than the submerged weight. This, from a hydrodynamic point of view, presents strong evidence for a close cause-and-effect relationship between coherent structures and sediment entrainment. Furthermore, instantaneous numerical results on particle entrainment and the surrounding turbulent flow are reported which show a strong correlation between sediment entrainment and sweep events and the underlying mechanisms are discussed.

1.
R. G.
Jackson
, “
Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows
,”
J. Fluid Mech.
77
,
531
560
(
1976
).
2.
B. M.
Sumer
and
B.
Oguz
, “
Particle motions near the bottom in turbulent flow in an open channel
,”
J. Fluid Mech.
86
,
109
127
(
1978
).
3.
B. M.
Sumer
and
R.
Deigaard
, “
Particle motions near the bottom in turbulent flow in an open channel. Part 2
,”
J. Fluid Mech.
109
,
311
337
(
1981
).
4.
Y.
Niño
and
M. H.
García
, “
Experiments on particle-turbulence interactions in the near-wall region of an open channel flow: Implications for sediment transport
,”
J. Fluid Mech.
326
,
285
319
(
1996
).
5.
J.
Lelouvetel
,
F.
Bigillon
,
D.
Doppler
,
I.
Vinkovic
, and
J. Y.
Champagne
, “
Experimental investigation of ejections and sweeps involved in particle suspension
,”
Water Resour. Res.
45
,
W02416
, doi: (
2009
).
6.
B.
Hofland
, “
Rock and roll, turbulence-induced damage to granular bed protections
,” Ph.D. dissertation (
Delft University of Technology
,
2005
).
7.
S. M.
Cameron
, “
Near boundary flow structure and particle entrainment
,” Ph.D. dissertation (
University of Auckland
,
2006
).
8.
A.
Dwivedi
,
B.
Melville
, and
A. Y.
Shamseldin
, “
Hydrodynamic forces generated on a spherical sediment particle during entrainment
,”
J. Hydraul. Eng.
136
,
756
769
(
2010
).
9.
A.
Dwivedi
,
B. W.
Melville
,
A. Y.
Shamseldin
, and
T. K.
Guha
, “
Flow structures and hydrodynamic force during sediment entrainment
,”
Water Resour. Res.
47
,
W01509
, doi: (
2011
).
10.
Y. S.
Chang
and
A.
Scotti
, “
Entrainment and suspension of sediments into a turbulent flow over ripples
,”
J. Turbul.
4
,
N19
(
2003
).
11.
Y. S.
Chang
and
A.
Scotti
, “
Turbulent convection of suspended sediments due to flow reversal
,”
J. Geophys. Res.
111
,
C07001
, doi: (
2006
).
12.
I.
Vinkovic
,
D.
Doppler
,
J.
Lelouvetel
, and
M.
Buffat
, “
Direct numerical simulation of particle interaction with ejections in turbulent channel flows
,”
Int. J. Multiphase Flow
37
,
187
197
(
2011
).
13.
C.
Escauriaza
and
F.
Sotiropoulos
, “
Lagrangian model of bed-load transport in turbulent junction flows
,”
J. Fluid Mech.
666
,
36
76
(
2011
).
14.
C.
Chan-Braun
,
M.
García-Villalba
, and
M.
Uhlmann
, “
Force and torque acting on particles in a transitionally rough open-channel flow
,”
J. Fluid Mech.
684
,
441
(
2011
).
15.
C.
Chan-Braun
,
M.
García-Villalba
, and
M.
Uhlmann
, “
Direct numerical simulation of sediment transport in turbulent open channel flow
,”
High Performance Computing in Science and Engineering '10
, edited by
W. E.
Nagel
,
D. B.
Kröner
,
M.
Resch
(
Springer-Verlag
,
Berlin Heidelberg
,
2011
), pp.
295
306
.
16.
R.
Glowinski
,
T. W.
Pan
,
T. I.
Hesla
, and
D. D.
Joseph
, “
A distributed Lagrange multiplier/fictitious domain method for particulate flows
,”
Int. J. Multiphase Flow
25
,
755
794
(
1999
).
17.
T. G.
Thomas
and
J. J. R.
Williams
, “
Development of a parallel code to simulate skewed flow over a bluff body
,”
J. Wind. Eng. Ind. Aerodyn.
67–68
,
155
167
(
1997
).
18.
K. M.
Singh
,
N. D.
Sandham
, and
J. J. R.
Williams
, “
Numerical simulation of flow over a rough bed
,”
J. Hydraul. Eng.
133
,
386
398
(
2007
).
19.
J.
Ma
and
J. J. R.
Williams
, “
Implication of horizontal force moments for the threshold of bed entrainment in an open-channel flow
,”
J. Hydro-Environ. Res.
3
,
2
8
(
2009
).
20.
C. S.
Peskin
, “
Flow patterns around heart valves: A numerical method
,”
J. Comput. Phys.
10
,
252
271
(
1972
).
21.
C.
Ji
,
A.
Munjiza
, and
J. J. R.
Williams
, “
A novel iterative direct-forcing immersed boundary method and its finite volume applications
,”
J. Comput. Phys.
231
,
1797
1821
(
2011
).
22.
A.
Munjiza
,
D. R. J.
Owen
, and
N.
Bicanic
, “
A combined finite-discrete element method in transient dynamics of fracturing solids
,”
Eng. Comput.
12
,
145
174
(
1995
).
23.
J.
Xiang
,
A.
Munjiza
,
J. P.
Latham
, and
R.
Guises
, “
On the validation of DEM and FEM/DEM models in 2d and 3d
,”
Eng. Comput.
26
,
673
687
(
2009
).
24.
A.
Munjiza
and
K. R. F.
Andrews
, “
Penalty function method for combined finite-discrete element systems comprising large number of separate bodies
,”
Int. J. Numer. Methods Eng.
49
,
1377
1396
(
2000
).
25.
A.
Munjiza
,
The Combined Finite-discrete Element Method
(
John Wiley & Sons
,
Chichester
,
2004
).
26.
A.
Munjiza
,
E.
Knight
, and
E.
Rougier
,
Computational Mechanics of Discontinua
(
Wiley
,
Chichester
,
2011
).
27.
A. M.
Ardekani
and
R. H.
Rangel
, “
Numerical investigation of particle-particle and particle-wall collisions in a viscous fluid
,”
J. Fluid Mech.
596
,
437
466
(
2008
).
28.
J. A.
Simeonov
and
J.
Calantoni
, “
Modeling mechanical contact and lubrication in direct numerical simulations of colliding particles
,”
Int. J. Multiphase Flow
46
,
38
53
(
2012
).
29.
A. J.
Grass
, “
Structural features of turbulent flow over smooth and rough boundaries
,”
J. Fluid Mech.
50
,
233
255
(
1971
).
30.
I.
Nezu
, “
Turbulence structure in an open channel flow
,” Ph.D. dissertation (
Kyoto University
,
1977
).
31.
A. J.
Grass
,
R. J.
Stuart
, and
M.
Mansour-Tehrani
, “
Vortical structures and coherent motion in turbulent flow over smooth and rough boundaries
,”
Philos. Trans. R. Soc. London, Ser. A
336
,
35
65
(
1991
).
32.
A.
Defina
, “
Transverse spacing of low-speed streaks in a channel flow over a rough bed
,”
Coherent Flow Structures in Open Channels
, edited by
P. J.
Ashworth
,
S. J.
Bennett
,
J. L.
Best
,
S. J.
McLelland
(
John Wiley & Sons
,
New York
,
1996
), pp.
87
99
.
33.
I.
Nezu
and
H.
Nakagawa
,
Turbulence in Open-Channel Flows
(
Balkema
,
Rotterdam, The Netherlands
,
1993
).
34.
J.
Jiménez
, “
Turbulent flows over rough walls
,”
Annu. Rev. Fluid Mech.
36
,
173
196
(
2004
).
35.
D.
Kaftori
,
G.
Hetsroni
, and
S.
Banerjee
, “
Particle behavior in the turbulent boundary layer. II. Velocity and distribution profiles
,”
Phys. Fluids
7
,
1107
1121
(
1995
).
36.
A.
Taniere
,
B.
Oesterle
, and
J. C.
Monnier
, “
On the behaviour of solid particles in a horizontal boundary layer with turbulence and saltation effects
,”
Exp. Fluids
23
,
463
471
(
1997
).
37.
K. T.
Kiger
and
C.
Pan
, “
Suspension and turbulence modification effects of solid particulates on a horizontal turbulent channel flow
,”
J. Turbul.
3
,
N19
(
2002
).
38.
M.
Righetti
and
G. P.
Romano
, “
Particle-fluid interactions in a plane near-wall turbulent flow
,”
J. Fluid Mech.
505
,
93
121
(
2004
).
39.
M.
Muste
,
K.
Yu
,
I.
Fujita
, and
R.
Ettema
, “
Two-phase flow insights into open-channel flows with suspended particles of different densities
,”
Environ. Fluid Mech.
9
,
161
186
(
2009
).
40.
O.
Durán
,
B.
Andreotti
, and
P.
Claudin
, “
Numerical simulation of turbulent sediment transport, from bed load to saltation
,”
Phys. Fluids
24
,
103306
(
2012
).
41.
P. L.
Wiberg
and
J. D.
Smith
, “
Model for calculating bed load transport of sediment
,”
J. Hydraul. Eng.
115
,
101
123
(
1989
).
42.
F. C.
Wu
and
Y. J.
Chou
, “
Rolling and lifting probabilities for sediment entrainment
,”
J. Hydraul. Eng.
129
,
110
119
(
2003
).
43.
S.
Dey
and
A.
Papanicolaou
, “
Sediment threshold under stream flow: A state-of-the-art review
,”
KSCE J. Civ. Eng.
12
,
45
60
(
2008
).
44.
W.
Xingkui
and
H. L.
Fontijn
, “
Experimental study of the hydrodynamic forces on a bed element in an open channel with a backward-facing step
,”
J. Fluids Struct.
7
,
299
318
(
1993
).
You do not currently have access to this content.