When a ground-coupled, rotating fluid column is modeled incorporating non-equilibrium pressure forces in the Navier-Stokes equations, a new exact solution results. The solution has been obtained in a similar manner to the classical equilibrium solution. Unlike the infinite-height, classical solution, the non-equilibrium pressure solution yields a ground-coupled rotating fluid column of finite height. A viscous, non-equilibrium Rankine vortex velocity distribution, developed previously, was used to demonstrate how the viscous and non-equilibrium pressure gradient forces, arising in the vicinity of the velocity gradient discontinuity that is present in the classical Rankine vortex model, effectively isolate the rotating central fluid column from the outer potential vortex region. Thus, the non-equilibrium region acts to confine and shield the central, rigid-body-like, rotating fluid core, justifying this examination of how such a rotating fluid column can interact with the ground. The resulting non-equilibrium ground-coupled, rotating fluid column solution was employed to estimate the central column heights of three well-documented dust devils, and the central column height predictions were consistent with published dust devil height statistics.

1.
R.
Fernandez-Feria
and
J. C.
Arrese
, “
Boundary layer induced by a conical vortex
,”
Q. J. Mech. Appl. Math.
53
,
609
(
2000
).
2.
L.
Parras
and
R.
Fernandez-Feria
, “
Interaction of an unconfined vortex with a solid surface
,”
Phys. Fluids
19
,
067104
(
2007
).
3.
R. R.
Long
, “
A vortex in an infinite fluid
,”
J. Fluid Mech.
11
,
611
(
1961
).
4.
R. L.
Ash
and
M. R.
Khorrami
, “
Vortex Stability
,” in
Fluid Vortices
, edited by
S. I.
Green
(
Kluwar Academic Publishers
,
Dordrecht, The Netherlands
,
1995
), Chap. VIII, Vol.
317
.
5.
N. B.
Ward
, “
The exploration of certain features of tornado dynamics using a laboratory model
,”
J. Atmos. Sci.
29
,
1194
(
1972
).
6.
C. R.
Church
and
J. T.
Snow
, “
The dynamics of natural tornadoes as inferred from laboratory simulations
,”
J. Rech. Atmos.
12
,
111
(
1979
).
7.
W. R. C.
Phillips
, “
On vortex boundary layers
,”
Proc. R. Soc. London, Ser. A
400
,
253
(
1985
).
8.
W. R. C.
Phillips
and
B. C.
Khoo
, “
The boundary layer beneath a Rankine-like vortex
,”
Proc. R. Soc. London, Ser. A
411
,
177
(
1987
).
9.
A.
Hirsa
,
J. M.
Lopez
, and
S.
Kim
, “
Evolution of an initially columnar vortex terminating normal to a no-slip wall
,”
Exp. Fluids
29
,
309
(
2000
).
10.
P. C.
Sinclair
, “
The lower structure of dust devils
,”
J. Atmos. Sci.
30
,
1599
(
1973
).
11.
W. H.
Hoecker
 Jr.
, “
Wind speed and air flow patterns in the Dallas Tornado of April 2, 1957
,”
Mon. Weather Rev.
88
,
167
(
1960
).
12.
W. J. M.
Rankine
,
A Manual of Applied Mechanics
, 5th ed. (
Charles Griffin and Co.
,
London
,
1869
).
13.
A. J.
Zuckerwar
and
R. L.
Ash
, “
Variational approach to the volume viscosity of fluids
,”
Phys. Fluids
18
,
047101
(
2006
).
14.
A. J.
Zuckerwar
and
R. L.
Ash
, “
Volume viscosity in fluids with multiple dissipative processes
,”
Phys. Fluids
21
,
033105
(
2009
).
15.
R. L.
Ash
,
I.
Zardadkhan
, and
A. J.
Zuckerwar
, “
The influence of pressure relaxation on the structure of an axial vortex
,”
Phys. Fluids
23
,
073101
(
2011
).
16.
C. C.
Lim
, “
Phase transition to super-rotating atmospheres in a simple planetary model for a nonrotating massive planet: Exact solution
,”
Phys. Rev. E
86
,
066304
(
2012
).
17.
U. T.
Bödewadt
, “
Die Drehströmung über festem Grunde
,”
Z. Angew. Math. Mech.
20
(
5
),
241
(
1940
).
18.
H.
Schlichting
,
Boundary Layer Theory
, 7th ed. (
McGraw Hill
,
New York
,
1979
).
19.
I. R.
Zardadkhan
, “
The influence of non-equilibrium pressure on rotating flows
,” Ph.D. dissertation (
Mechanical and Aerospace Engineering Department, Old Dominion University
, May
2012
).
20.
R.
Monchaux
,
F.
Ravelet
,
B.
Dubrulle
,
A.
Chiffaudel
, and
F.
Daviaud
, “
Properties of steady states in turbulent axisymmetric flows
,”
Phys. Rev. Lett.
96
,
124502
(
2006
).
21.
R. J.
Adrian
, “
Hairpin vortex organization and wall turbulence
,”
Phys. Fluids
19
,
041301
(
2007
).
22.
J.
Kierzenka
and
L. F.
Shampine
, “
A BVP solver based on residual control and the MATLAB PSE
,”
ACM Trans. Math. Softw.
27
,
299
(
2001
).
23.
G. D.
Hess
and
K. T.
Spillane
, “
Characteristics of dust devils in Australia
,”
J. Appl. Met.
29
,
498
(
1990
).
24.
In order to integrate the pressure correction function for this unrealistic case, the following conditions were assumed: very dry air at 50 °C and 1 atm, with a pressure relaxation coefficient of 80 μs, a core angular rotation rate of 1250 rad/s and a kinematic viscosity of 1.8 × 10−5 m2/s, resulting in a core radius of 1 mm, and an estimated maximum pressure deficit of 1 Pa, away from the ground (with a nominal rotating central column diameter of 0.2 mm). The estimated height of such a rotating air column was 1.7 mm.
You do not currently have access to this content.