We investigate the nonlinear dynamics of long-wave Marangoni convection in a 2D binary-liquid layer heated from below. Free surface deformations and the Soret effect are taken into account. We employ the set of evolution equations derived in earlier work in the case of small Galileo and Lewis numbers and solve it numerically with periodic boundary conditions. We validate our numerical solution by comparison between the results obtained via two different numerical methods, as well as by comparison with the prior analytical results. We study the transitions between the nonlinear regimes emerging at finite supercriticality values and find a rich variety of patterns. In a sufficiently large computational domain, we observe multistability of waves chaotic in time and spatially replicated periodic and quasiperiodic solutions. For sufficiently high values of the Marangoni number, we also observe a breakdown of model equations.

1.
J. R. A.
Pearson
, “
On convection cells induced by surface tension
,”
J. Fluid Mech.
4
,
489
(
1958
).
2.
L. E.
Scriven
and
C. V.
Sternling
, “
On cellular convection driven by surface-tension gradients: Effects of mean surface tension and surface viscosity
,”
J. Fluid Mech.
19
,
321
(
1964
).
3.
G. I.
Sivashinsky
, “
Large cells in nonlinear Marangoni convection
,”
Physica D
4
,
227
(
1982
).
4.
E.
Knobloch
, “
Pattern selection in long-wavelength convection
,”
Physica D
41
,
450
(
1990
).
5.
J. L.
Castillo
and
M. G.
Velarde
, “
Thermal diffusion and Marangoni-Benard instability of a two-component fluid layer heated from below
,”
Phys. Lett. A
66
,
489
(
1978
).
6.
J. L.
Castillo
and
M. G.
Velarde
, “
Microgravity and the thermoconvective stability of a binary liquid layer open to the ambient air
,”
J. Non-Equilib. Thermodyn.
5
,
111
(
1980
).
7.
J. L.
Castillo
and
M. G.
Velarde
, “
Buoyancy-thermocapillary instability: The role of interfacial deformation in one- and two-component fluid layers heated from below or above
,”
J. Fluid Mech.
125
,
463
(
1982
).
8.
C. L.
McTaggart
, “
Convection driven by concentration- and temperature-dependent surface tension
,”
J. Fluid Mech.
134
,
301
(
1983
).
9.
J. K.
Bhattacharjee
, “
Marangoni convection in binary liquids
,”
Phys. Rev. E
50
,
1198
(
1994
).
10.
S. W.
Joo
, “
Marangoni instabilities in liquid mixtures with Soret effects
,”
J. Fluid Mech.
293
,
127
(
1995
).
11.
A.
Oron
and
A. A.
Nepomnyashchy
, “
Long-wavelength thermocapillary instability with the Soret effect
,”
Phys. Rev. E
69
,
016313
(
2004
).
12.
A.
Podolny
,
A.
Oron
, and
A. A.
Nepomnyashchy
, “
Long-wave Marangoni instability in a binary-liquid layer with deformable interface in the presence of Soret effect: Linear theory
,”
Phys. Fluids
17
,
104104
(
2005
).
13.
A.
Podolny
,
A.
Oron
, and
A. A.
Nepomnyashchy
, “
Linear and nonlinear theory of long-wave Marangoni instability with the Soret effect at finite Biot numbers
,”
Phys. Fluids
18
,
054104
(
2006
).
14.
A.
Podolny
,
A.
Oron
, and
A. A.
Nepomnyashchy
, “
Long-wave Marangoni instability in a binary liquid layer on a thick solid substrate
,”
Phys. Rev. E
76
,
026309
(
2007
).
15.
K.
Radhakrishnan
and
A.
Hindmarsh
, “
Description and use of LSODE, the Livermore solver for ordinary differential equations
,” NASA Reference Publication 1327,
1993
.
16.
J. P.
Boyd
,
Chebyshev and Fourier Spectral Methods
(
Dover Publications
,
Inc., Mineola
,
2000
).
17.
A.
Oron
,
O.
Gottlieb
, and
E.
Novbari
, “
Numerical analysis of a weighted-residual integral boundary-layer model for nonlinear dynamics of falling liquid films
,”
Eur. J. Mech. B/Fluids
28
,
1
(
2009
).
18.
E.
Siminos
and
P.
Cvitanovic
, “
Continuous symmetry reduction and return maps for high-dimensional flows
,”
Physica D
240
,
187
(
2011
).
19.
Materials and Fluids under Low Gravity
, edited by
L.
Ratke
,
H. U.
Walter
, and
B.
Feuerbacher
(
Springer
,
Berlin
,
1996
).
20.
I.
Simanovskii
,
P.
Géoris
,
A.
Nepomnyashchy
, and
J. C.
Legros
, “
Oscillatory instability in multilayer system
,”
Phys. Fluids
15
,
3867
(
2003
).
21.
P.
Kolodner
,
H.
Williams
, and
C.
Moe
, “
Optical measurement of the Soret coefficient of ethanol/water solutions
,”
J. Chem. Phys.
88
,
6512
(
1988
).
You do not currently have access to this content.