We consider the penetration process of a liquid drop approaching an exposed pore along the axis of symmetry, which is intended to model the penetration of non-wetting drops into a porous medium. Inertia and gravity are neglected at the current stage. In addition to the penetration into a capillary tube in the literature, the drop may spread on the outer surface of the porous medium. Based on the mechanical equilibrium states, we find the critical drop radius, below which the drop penetration is spontaneous. We further identify five penetration regimes based on the drop radius and the static contact angle, all of which are exemplified by phase-field simulations. The free energy as a function of penetration depth reveals only two stable equilibrium states: the drop either enters the pore completely (maximum penetration) or stays at the pore inlet (zero penetration). For a non-penetrating drop radius, the free energy has a local maximum which constitutes an energy barrier that prevents spontaneous penetration. Finally, we modify the Lucas-Washburn equation to describe the dynamic process of penetration. Due to the neglect of dissipation from moving contact lines and entry flow, the modified Lucas-Washburn equation greatly overestimates the penetration rate, especially at the initial stage.

1.
N. R.
Morrow
and
G.
Mason
, “
Recovery of oil by spontaneous imbibition
,”
Curr. Opin. Colloid Interface Sci.
6
,
321
337
(
2001
).
2.
I.
Pezron
,
G.
Bourgain
, and
D.
Quéré
, “
Imbibition of a fabric
,”
J. Colloid Interface Sci.
173
,
319
327
(
1995
).
3.
J.
Kettle
,
T.
Lamminmäki
, and
P.
Gane
, “
A review of modified surfaces for high speed inkjet coating
,”
Surf. Coat. Technol.
204
,
2103
2109
(
2010
).
4.
U.
Pasaogullari
and
C.-Y.
Wang
, “
Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells
,”
Electrochim. Acta
49
,
4359
4369
(
2004
).
5.
R.
Lucas
, “
Ueber das zeitgesetz des kapillaren aufstiegs von flussigkeiten
,”
Kolloid-Z.
23
,
15
(
1918
).
6.
E. W.
Washburn
, “
The dynamics of capillary flow
,”
Phys. Rev.
17
,
273
283
(
1921
).
7.
D.
Quéré
, “
Inertial capillarity
,”
Europhys. Lett.
39
,
533
538
(
1997
).
8.
M.
Radiom
,
W. K.
Chan
, and
C.
Yang
, “
A study of capillary flow from a pendant droplet
,”
Microfluid. Nanofluid.
7
,
697
707
(
2009
).
9.
A. V.
Bazilevsky
,
K. G.
Kornev
,
A. N.
Rozhkov
, and
A. V.
Neimark
, “
Spontaneous absorption of viscous and viscoelastic fluids by capillaries and porous substrates
,”
J. Colloid Interface Sci.
262
,
16
24
(
2003
).
10.
M.
Reyssat
,
L.
Courbin
,
E.
Reyssat
, and
H. A.
Stone
, “
Imbibition in geometries with axial variations
,”
J. Fluid Mech.
615
,
335
344
(
2008
).
11.
B. V.
Zhmud
,
F.
Tiberg
, and
K.
Hallstensson
, “
Dynamics of capillary rise
,”
J. Colloid Interface Sci.
228
,
263
269
(
2000
).
12.
K. G.
Kornev
and
A. V.
Neimark
, “
Spontaneous penetration of liquids into capillarie and porous membranes revisited
,”
J. Colloid Interface Sci.
235
,
101
113
(
2001
).
13.
P.
Joos
,
P.
van Remoortere
, and
M.
Bracke
, “
The kinetics of wetting in a capillary
,”
J. Colloid Interface Sci.
136
,
189
197
(
1990
).
14.
A.
Marmur
, “
Penetration of a small drop into a capillary
,”
J. Colloid Interface Sci.
122
,
209
219
(
1988
).
15.
A.
Marmur
, “
The radial capillary
,”
J. Colloid Interface Sci.
124
,
301
308
(
1988
).
16.
M.
Denesuk
,
G. L.
Smith
,
B. J. J.
Zelinski
,
N. J.
Kreidl
, and
D. R.
Uhlmann
, “
Capillary penetration of liquid droplets into porous materials
,”
J. Colloid Interface Sci.
158
,
114
120
(
1993
).
17.
K. P.
Hapgood
,
J. D.
Litster
,
S. R.
Biggs
, and
T.
Howes
, “
Drop penetration into porous powder beds
,”
J. Colloid Interface Sci.
253
,
353
366
(
2002
).
18.
S.
Bekou
and
D.
Mattia
, “
Wetting of nanotubes
,”
Curr. Opin. Colloid Interface Sci.
16
,
259
265
(
2011
).
19.
D.
Schebarchov
and
S. C.
Hendy
, “
Uptake and withdrawal of droplets from carbon nanotubes
,”
Nanoscale
3
,
134
141
(
2011
).
20.
M.
Moseler
,
F.
Cervantes-Sodi
,
S.
Hofmann
,
G.
Csanyi
, and
A. C.
Ferrai
, “
Dynamic catalyst restructuring during carbon nanotube growth
,”
ACS Nano
4
,
7587
7595
(
2010
).
21.
D.
Schebarchov
and
S. C.
Hendy
, “
Capillary absorption of metal nanodroplets by single-wall carbon nanotubes
,”
Nano Lett.
8
,
2253
2257
(
2008
).
22.
D.
Schebarchov
and
S. C.
Hendy
, “
Dynamics of capillary absorption of droplets by carbon nanotubes
,”
Phys. Rev. E
78
,
046309
(
2008
).
23.
G. R.
Willmott
,
C.
Neto
, and
S. C.
Hendy
, “
Update of water droplets by non-wetting capillaries
,”
Soft Matter
7
,
2357
2363
(
2011
).
24.
D.
Jacqmin
, “
Contact-line dynamics of a diffuse fluid interface
,”
J. Fluid Mech.
402
,
57
88
(
2000
).
25.
W.
Villanueva
and
G.
Amberg
, “
Some generic capillary-driven flows
,”
Int. J. Multiphase Flow
32
,
1072
1086
(
2006
).
26.
V. V.
Khatavkar
,
P. D.
Anderson
, and
H. E. H.
Meijer
, “
Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model
,”
J. Fluid Mech.
572
,
367
387
(
2007
).
27.
H.
Mehrabian
,
P.
Gao
, and
J. J.
Feng
, “
Wicking flow through microchannels
,”
Phys. Fluids
23
,
122108
(
2011
).
28.
P.
Yue
and
J. J.
Feng
, “
Wall energy relaxation in the Cahn-Hilliard model for moving contact lines
,”
Phys. Fluids
23
,
012106
(
2011
).
29.
P.
Yue
,
C.
Zhou
, and
J. J.
Feng
, “
Sharp-interface limit of the Cahn-Hilliard model for moving contact lines
,”
J. Fluid Mech.
645
,
279
294
(
2010
).
30.
P.
Yue
,
C.
Zhou
,
J. J.
Feng
,
C. F.
Ollivier-Gooch
, and
H. H.
Hu
, “
Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing
,”
J. Comput. Phys.
219
,
47
67
(
2006
).
31.
P.
Yue
,
J. J.
Feng
,
C.
Liu
, and
J.
Shen
, “
A diffuse-interface method for simulating two-phase flows of complex fluids
,”
J. Fluid Mech.
515
,
293
317
(
2004
).
32.
P.
Yue
and
J. J.
Feng
, “
Can diffuse-interface models quantitatively describe moving contact lines
?”
Eur. Phys. J. Spec. Top.
197
,
37
46
(
2011
).
33.
R. L.
Hoffman
, “
A study of the advancing interface
,”
J. Colloid Interface Sci.
50
,
228
241
(
1975
).
34.
A.
Delbos
,
E.
Lorenceau
, and
O.
Pitois
, “
Forced impregnation of a capillary tube with drop impact
,”
J. Colloid Interface Sci.
341
,
171
177
(
2010
).
35.
T.
Ratcliffe
and
R. H.
Davis
, “
Drop trapping in axisymmetric constrictions with arbitrary contact angle
,”
Phys. Fluids
24
,
062102
(
2012
).
36.
E. K.
Rideal
, “
On the flow of liquids under capillary pressure
,”
Philos. Mag. Ser. 6
44
,
1152
1159
(
1922
).
37.
C. H.
Bosanquet
, “
On the flow of liquids into capillary tubes
,”
Philos. Mag. Ser. 6
45
,
525
531
(
1923
).
38.
A.
Marmur
, “
Penetration and displacement in capillary systems
,” in
Modern Approaches to Wettability: Theory and Applications
, edited by
M. E.
Schrader
and
G. I.
Loeb
(
Plenum Press
,
New York
,
1992
), pp.
327
358
.
39.
A.
Marmur
, “
Penetration and displacement in capillary systems of limited size
,”
Adv. Colloid Interface Sci.
39
,
13
33
(
1992
).
40.
P.
Yue
,
C.
Zhou
, and
J. J.
Feng
, “
Spontaneous shrinkage of drops and mass conservation in phase-field simulations
,”
J. Comput. Phys.
223
,
1
9
(
2007
).
You do not currently have access to this content.