At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv [“

Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction
,” Phys. Rev. E86, 021503 (2012)] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor [“
Heat and mass transfer from single spheres in Stokes flow
,” Phys. Fluids5, 387 (1962)]
, with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.

1.
J.
Lyklema
,
Fundamentals of Interface and Colloid Science
, Vol.
II
(
Academic
,
New York
,
1995
).
2.
R. J.
Hunter
,
Foundations of Colloidal Science
(
Oxford University Press
,
Oxford, UK
,
2000
).
3.
H.-C.
Chang
and
L. Y.
Yeo
,
Electrokinetically Driven Microfluidics and Nanofluidics
(
Cambridge University Press
,
New York, NY
,
2010
).
4.
V.
Kostal
,
J.
Katzenmeyer
, and
E. A.
Arriaga
, “
Capillary electrophoresis in bioanalysis
,”
Anal. Chem.
80
,
4533
(
2008
).
5.
M.
Smoluchowski
, “
Contribution to the theory of electro-osmosis and related phenomena
,”
Bull. Int. Acad. Sci. Cracovie
184
,
199
(
1903
).
6.
E.
Yariv
, “
An asymptotic derivation of the thin-Debye-layer limit for electrokinetic phenomena
,”
Chem. Eng. Commun.
197
,
3
17
(
2009
).
7.
P. H.
Wiersema
,
A. L.
Loeb
, and
J. T. G.
Overbeek
, “
Calculation of the electrophoretic mobility of a spherical colloid particle
,”
J. Colloid Interface Sci.
22
,
78
99
(
1966
).
8.
R. W.
O'Brien
and
L. R.
White
, “
Electrophoretic mobility of a spherical colloidal particle
,”
J. Chem. Soc., Faraday Trans. 2
74
,
1607
1626
(
1978
).
9.
B. V.
Derjaguin
, and
S. S.
Dukhin
, “
Nonequilibrium double layer and electrokinetic phenomena
,” in
Electrokinetic phenomena
,
Surface and Colloid Science
Vol.
7
, edited by
E.
Matijevic
(
John Wiley
,
New York
,
1974
), pp.
273
336
.
10.
S. S.
Dukhin
, “
Non-equilibrium electric surface phenomena
,”
Adv. Colloid Interface Sci.
44
,
1
134
(
1993
).
11.
R. W.
O'Brien
and
R. J.
Hunter
, “
The electrophoretic mobility of large colloidal particles
,”
Can. J. Chem.
59
,
1878
1887
(
1981
).
12.
R. W.
O'Brien
, “
The solution of the electrokinetic equations for colloidal particles with thin double layers
,”
J. Colloid Interface Sci.
92
,
204
216
(
1983
).
13.
O.
Schnitzer
,
I.
Frankel
, and
E.
Yariv
, “
Electrokinetic flows about conducting drops
,”
J. Fluid Mech.
722
,
394
423
(
2013
).
14.
It turns out in certain problems, such as electrophoresis of a moderately-charged particle and electro-osmotic flow through straight channels, the linear response actually prevails even for β ∼ O(1), see Ref. 23.
15.
A.
Kumar
,
E.
Elele
,
M.
Yeksel
,
B.
Khusid
,
Z.
Qiu
, and
A.
Acrivos
, “
Measurements of the fluid and particle mobilities in strong electric fields
,”
Phys. Fluids
18
,
123301
(
2006
).
16.
S.
Barany
, “
Electrophoresis in strong electric fields
,”
Adv. Colloid Interface Sci.
147–148
,
36
43
(
2009
).
17.
F. C.
Leinweber
and
U.
Tallarek
, “
Concentration polarization-based nonlinear electrokinetics in porous media: induced-charge electroosmosis
,”
J. Phys. Chem. B
109
,
21481
21485
(
2005
).
18.
Y.
Ben
and
H.-C.
Chang
, “
Nonlinear Smoluchowski slip velocity and micro-vortex generation
,”
J. Fluid Mech.
461
,
229
238
(
2002
).
19.
Y.
Ben
,
E. A.
Demekhin
, and
H.-C.
Chang
, “
Nonlinear electrokinetics and ‘superfast' electrophoresis
,”
J. Colloid Interface Sci.
276
,
483
497
(
2004
).
20.
L. H.
Olesen
,
M. Z.
Bazant
, and
H.
Bruus
, “
Strongly nonlinear dynamics of electrolytes in large ac voltages
,”
Phys. Rev. E
82
,
011501
(
2010
).
21.
H.-C.
Chang
,
E. A.
Demekhin
, and
V. S.
Shelistov
, “
Competition between Dukhin's and Rubinstein's electrokinetic modes
,”
Phys. Rev. E
86
,
046319
(
2012
).
22.
A. S.
Dukhin
and
S. S.
Dukhin
, “
Aperiodic capillary electrophoresis method using an alternating current electric field for separation of macromolecules
,”
Electrophoresis
26
,
2149
2153
(
2005
).
23.
O.
Schnitzer
and
E.
Yariv
, “
Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction
,”
Phys. Rev. E
86
,
021503
(
2012
).
24.
E. J.
Hinch
,
Perturbation Methods
(
Cambridge University Press
,
Cambridge
,
1991
).
25.
A.
Acrivos
and
T. D.
Taylor
, “
Heat and mass transfer from single spheres in Stokes flow
,”
Phys. Fluids
5
,
387
394
(
1962
).
26.
T. S.
Simonova
and
S. S.
Dukhin
, “
Nonlinear polarization of the diffusion part of the thin double layer of a spherical particle
,”
Kolloidn. Zh.
38
,
79
85
(
1976
).
27.
T. S.
Simonova
and
S. S.
Dukhin
, “
Nonlinear electrophoresis of a dielectric and conducting ideally polarizable particles
,”
Kolloidn. Zh.
38
,
86
93
(
1976
).
28.
N. A.
Mishchuk
and
S. S.
Dukhin
, “
Electrophoresis of solid particles at large Peclet numbers
,”
Electrophoresis
23
,
2012
2022
(
2002
).
29.
V.
Shilov
,
S.
Barany
,
C.
Grosse
, and
O.
Shramko
, “
Field-induced disturbance of the double layer electro-neutrality and non-linear electrophoresis
,”
Adv. Colloid Interface Sci.
104
,
159
173
(
2003
).
30.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1965
).
31.
See supplementary material at http://dx.doi.org/10.1063/1.4804672 for these functions.
32.
N. J.
Rivette
and
J. C.
Baygents
, “
A note on the electrostatic force and torque acting on an isolated body in an electric field
,”
Chem. Eng. Sci.
51
,
5205
5211
(
1996
).
33.
I.
Proudman
and
J. R. A.
Pearson
, “
Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder
,”
J. Fluid Mech.
2
,
237
262
(
1957
).
34.
L. G.
Leal
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
(
Cambridge University Press
,
New York
,
2007
).
35.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
, 3rd ed. (
Dover
,
New York, NY
,
1965
).
36.
M.
Van Dyke
,
Perturbation Methods in Fluid Mechanics
(
Academic press
,
New York
,
1964
).
37.
H.
Brenner
, “
The Stokes resistance of an arbitrary particle – IV. Arbitrary fields of flow
,”
Chem. Eng. Sci.
19
,
703
727
(
1964
).
38.
N. A.
Mishchuk
, “
Concentration polarization of interface and nonlinear electrokinetic phenomena
,”
Adv. Colloid Interface Sci.
160
,
16
39
(
2010
).
39.
N. A.
Mishchuk
and
N. O.
Barinova
, “
Theoretical and experimental study of nonlinear electrophoresis
,”
Colloid J.
73
,
88
96
(
2011
).
40.
B. R.
Midmore
,
G. V.
Pratt
, and
T. M.
Herrington
, “
Evidence for the validity of electrokinetic theory in the thin double layer region
,”
J. Colloid Interface Sci.
184
,
170
174
(
1996
).
41.
R. J.
Hunter
, “
The significance of stagnant layer conduction in electrokinetics
,”
Adv. Colloid Interface Sci.
100
,
153
167
(
2003
).
42.
A. V.
Delgado
,
F.
Gonzalez-Caballero
,
R. J.
Hunter
,
L. K.
Koopal
, and
J.
Lyklema
, “
Measurement and interpretation of electrokinetic phenomena
,”
J. Colloid Interface Sci.
309
,
194
224
(
2007
).
43.
In contrast, the electrophoretic velocity of moderately charged particles (
$\protect \mathrm{Bi}\ll 1$
Bi 1
) is linear in the field up to much larger β values: in the absence of strong counter-ion accumulation adjacent to the surface, surface conduction fluxes are only O(βδ) small. Indeed, the moderate-charge macroscale model provided in Ref. 23 yields Smoluchowski's mobility for β ∼ O(1). While the above surface-conduction scaling appears to suggest nonlinearities for β ∼ O−1), an explicit investigation of that limit shows that surface conduction effects remain subdominant.57 At these conditions, the first violation of linearity may be due to dielectric solid polarization, see Ref. 54.
44.
E. N.
Kalaĭdin
,
E. A.
Demekhin
, and
A. S.
Korovyakovskiĭ
, “
On the theory of electrophoresis of the second kind
,”
Dokl. Phys.
54
,
210
214
(
2009
).
45.
E.
Yariv
, “
Migration of ion-exchange particles driven by a uniform electric field
,”
J. Fluid Mech.
655
,
105
121
(
2010
).
46.
J. C.
Baygents
and
D. A.
Saville
, “
Electrophoresis of drops and bubbles
,”
J. Chem. Soc., Faraday Trans.
87
,
1883
1898
(
1991
).
47.
J. C.
Baygents
and
D. A.
Saville
, “
Electrophoresis of small particles and fluid globules in weak electrolytes
,”
J. Colloid Interface Sci.
146
,
9
37
(
1991
).
48.
F. J.
Arroyo
,
F.
Carrique
,
T.
Bellini
, and
A. V.
Delgado
, “
Dielectric dispersion of colloidal suspensions in the presence of stern layer conductance: Particle size effects
,”
J. Colloid Interface Sci.
210
,
194
199
(
1999
).
49.
F.
Booth
, “
The effect of surface conditions on the electrophoresis of solid particles
,”
J. Colloid Sci.
6
,
549
556
(
1951
).
50.
A. S.
Dukhin
, “
Biospecific mechanism of double layer formation and peculiarities of cell electrophoresis
,”
Colloids Surf., A
73
,
29
48
(
1993
).
51.
T. M.
Squires
and
M. Z.
Bazant
, “
Induced-charge electro-osmosis
,”
J. Fluid Mech.
509
,
217
252
(
2004
).
52.
E.
Yariv
, “
Nonlinear electrophoresis of ideally polarizable spherical particles
,”
Europhys. Lett.
82
,
54004
(
2008
).
53.
E.
Yariv
and
A. M. J.
Davis
, “
Electro-osmotic flows over highly polarizable dielectric surfaces
,”
Phys. Fluids
22
,
052006
(
2010
).
54.
O.
Schnitzer
and
E.
Yariv
, “
Dielectric-solid polarization at strong fields: Breakdown of Smoluchowski's electrophoresis formula
,”
Phys. Fluids
24
,
082005
(
2012
).
55.
M. B.
Andersen
,
M.
van Soestbergen
,
A.
Mani
,
H.
Bruus
,
P. M.
Biesheuvel
, and
M. Z.
Bazant
, “
Current-induced membrane discharge
,”
Phys. Rev. Lett.
109
,
108301
(
2012
).
56.
E.
Yariv
, “
Electrokinetic self-propulsion by inhomogeneous surface kinetics
,”
Proc. R. Soc. London, Ser. A
467
,
1645
(
2011
).
57.
O.
Schnitzer
and
E.
Yariv
, “
Strong-field electrophoresis
,”
J. Fluid Mech.
701
,
333
351
(
2012
).

Supplementary Material

You do not currently have access to this content.