The hydrodynamic forces and torques on a rotating cylinder in a narrow channel are investigated in this paper using lubrication analysis and scaling analysis. To explore the effect of the shape of the gap, three different geometries are considered. The force and torque expressions from lubrication analysis agree well with numerical solutions when the gap between cylinder and wall is small. The solutions from scaling analysis can be applied over a broader range, but only if the scaling coefficients are properly deduced from numerical solution or lubrication analysis. Self-similarity in the solutions is discussed as well.
REFERENCES
1.
M.
Sen
, D.
Wajerski
, and M.
Gad-el-Hak
, “A novel pump for MEMS applications
,” ASME J. Fluids Eng.
118
, 624
–627
(1996
).2.
R. F.
Day
and H. A.
Stone
, “Lubrication analysis and boundary integral simulations of a viscous micropump
,” J. Fluid Mech.
416
, 197
–216
(2000
).3.
B.
Felderhof
, “Swimming and peristaltic pumping between two plane parallel walls
,” J. Phys.: Condens. Matter
21
, 204106
(2009
).4.
I. O.
Götze
and G.
Gompper
, “Dynamic self-assembly and directed flow of rotating colloids in microchannels
,” Phys. Rev. E
84
, 031404
–1
031404
–11
(2011
).5.
J.
Yang
, G.
Huber
, and C. W.
Wolgemuth
, “Forces and torques on rotating spirochete flagella
,” Phys. Rev. Lett.
107
, 268101
–1
268101
–4
(2011
).6.
N. W.
Charon
, S. F.
Goldstein
, S. M.
Block
, K.
Curci
, J. D.
Ruby
, J. A.
Kreiling
, and R. J.
Limberger
, “Morphology and dynamics of protruding spirochete periplasmic flagella
,” J. Bacteriol.
174
, 832
–40
(1992
).7.
C.
Dombrowski
, W.
Kan
, M. A.
Motaleb
, N. W.
Charon
, R. E.
Goldstein
, and C. W.
Wolgemuth
, “The elastic basis for the shape of borrelia burgdorferi
,” Biophys. J.
96
, 4409
–4417
(2009
).8.
N. W.
Charon
, S. F.
Goldstein
, M.
Marko
, C.
Hsieh
, L. L.
Gebhardt
, M. A.
Motaleb
, C. W.
Wolgemuth
, R. J.
Limberger
, and N.
Rowe
, “The flat-ribbon configuration of the periplasmic flagella of Borrelia burgdorferi and its relationship to motility and morphology
,” J. Bacteriol.
191
, 600
–607
(2009
).9.
W.
Kan
and C. W.
Wolgemuth
, “The shape and dynamics of the Leptospiraceae
,” Biophys. J.
93
, 54
–61
(2007
).10.
D. K.
Vig
and C. W.
Wolgemuth
, “Swimming dynamics of the lyme disease spirochete
,” Phys. Rev. Lett.
109
, 218104
–1
218104
–5
(2012
).11.
G. B.
Jeffery
, “The rotation of two circular cylinders in a viscous fluid
,” Proc. R. Soc. London, Ser. A
101
, 169
–174
(1922
).12.
D. J.
Jeffrey
and Y.
Onishi
, “The slow motion of a cylinder next to a plane wall
,” Q. J. Mech. Appl. Math.
34
, 129
–137
(1981
).13.
S.
Champmartin
, A.
Ambari
, and N.
Roussel
, “Flow around a confined rotating cylinder at small Reynolds number
,” Phys. Fluids
19
, 103101
–1
103101
–9
(2007
).14.
G. H.
Wannier
, “A contribution to the hydrodynamics of lubrication
,” Q. Appl. Math.
8
, 1
–32
(1950
).15.
R. C. J.
Howland
and R. C.
Knight
, “Slow rotation of a circular cylinder in a viscous fluid bounded by parallel walls
,” Math. Proc. Cambridge Philos. Soc.
29
, 277
–87
(1933
).16.
W. W.
Hackborn
, “Asymmetric stokes flow between parallel planes due to a rotlet
,” J. Fluid Mech.
218
, 531
–546
(1990
).17.
A. S.
Dvinsky
and A. S.
Popel
, “Motion of a rigid cylinder between parallel palates in stokes flow: Part 1: Motion in a quiescent fluid and sedimentation
,” Comput. Fluids
15
, 391
–404
(1987
).18.
J.
Happel
and H.
Brenner
, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(Springer
, New York
, 1983
), p. 345
.19.
It fails, however, near k = 1, since ϕ(1 − η) = 1 − η + ⋯ whereas the correct behavior is 1 − 5/3η + ⋯.
© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.