The current theoretical belief is that the steady-state shear banding in viscoelastic liquids requires a non-monotonic constitutive relationship between shear stress and shear rate. Although existing rheological studies conclude that the constitutive equation for entangled polymers is monotonic, recent experimental evidence suggests shear banding can nevertheless occur in polymer solutions. In this work, we predict, for the first time, steady state shear banding with a realistic monotonic constitutive theory for polymeric liquids. The key is that a proper account must be taken of the coupling of polymer stress to polymer concentration. We also predict multiple steady states at some shear rates as seen experimentally, with shear banding if the flow is ramped quickly enough from rest, but homogeneous linear shear flow otherwise.

1.
R.
Ravindranath
,
S.-Q.
Wang
,
M.
Olechnowicz
, and
R. P.
Quirk
, “
Banding in simple steady shear of entangled polymer solutions
,”
Macromolecules
41
,
2663
2670
(
2008
).
2.
P. E.
Boukany
and
S.-Q.
Wang
, “
Shear banding or not in entangled DNA solutions
,”
Macromolecules
43
,
6950
6952
(
2010
).
3.
Y. T.
Hu
, “
Steady-state shear banding in entangled polymers
?”
J. Rheol.
54
,
1307
1323
(
2010
).
4.
R.
Ravindranath
,
Y.
Wang
,
P.
Boukany
, and
X.
Li
, “
Letter to the editor: Cone partitioned plate (CPP) vs circular Couette
,”
J. Rheol.
56
,
675
681
(
2012
).
5.
Y. T.
Hu
, “
Response to: CPP vs circular Coette
,”
J. Rheol.
56
,
683
686
(
2012
).
6.
J.
Yerushalmi
,
S.
Katz
, and
R.
Shinnar
, “
The stability of steady shear flows of some viscoelastic fluids
,”
Chem. Eng. Sci.
25
,
1891
1902
(
1970
).
7.
J. M.
Adams
and
P. D.
Olmsted
, “
Nonmonotonic models are not necessary to obtain shear banding phenomena in entangled polymer solutions
,”
Phys. Rev. Lett.
102
,
067801
(
2009
).
8.
J. M.
Adams
,
S. M.
Fielding
, and
P. D.
Olmsted
, “
Transient shear banding in entangled polymers: A study using the Rolie-Poly model
,”
J. Rheol.
55
,
1007
1032
(
2011
).
9.
E.
Helfand
and
G. H.
Fredrickson
, “
Large fluctuations in polymer solutions under shear
,”
Phys. Rev. Lett.
62
,
2468
2471
(
1989
).
10.
V.
Schmitt
,
C. M.
Marques
, and
F.
Lequeux
, “
Shear-induced phase separation of complex fluids: The role of flow-concentration coupling
,”
Phys. Rev. E
52
,
4009
4015
(
1995
).
11.
J. K. G.
Dhont
and
W. J.
Briels
, “
Gradient and vorticity banding
,”
Rheol. Acta
47
,
257
281
(
2008
).
12.
M. E.
Helgeson
,
L.
Porcar
,
C.
Lopez-Barron
, and
N. J.
Wagner
, “
Direct observation of flow-concentration coupling in a shear-banding fluid
,”
Phys. Rev. Lett.
105
,
084501
(
2010
).
13.
X.-F.
Yuan
and
L.
Jupp
, “
Interplay of flow-induced phase separations and rheological behavior of complex fluids in shearbanding flow
,”
Europhys. Lett.
60
,
691
697
(
2002
).
14.
S. M.
Fielding
and
P. D.
Olmsted
, “
Kinetics of the shear banding instability in startup flows
,”
Phys. Rev. E
68
,
036313
(
2003
).
15.
S. M.
Fielding
and
P. D.
Olmsted
, “
Early stage kinetics in a unified model of shear-induced demixing and mechanical shear banding
,”
Phys. Rev. Lett.
90
,
224501
(
2003
).
16.
S. M.
Fielding
and
P. D.
Olmsted
, “
Flow phase diagrams for concentration-coupled shear banding
,”
Eur. Phys. J. E
11
,
65
83
(
2003
).
17.
R. G.
Larson
,
Constitutive Equations for Polymer Melts and Solutions
, (
Butterworths
,
Boston
,
1988
).
18.
P.
Olmsted
,
O.
Radulescu
, and
C.
Lu
, “
Johnson-Segalman model with a diffusion term in cylindrical Couette flow
,”
J. Rheol.
44
,
257
275
(
2000
).
19.
F.
Brochard
and
P.-G.
de Gennes
, “
Dynamical scaling of polymers in theta solvents
,”
Macromolecules
10
,
1157
1161
(
1977
).
20.
A.
Onuki
, “
Dynamic equations of polymers with deformations in semidilute regions
,”
J. Phys. Soc. Jpn.
59
,
3423
(
1990
).
21.
S. T.
Milner
, “
Dynamical theory of concentration fluctuations in polymer solutions under shear
,”
Phys. Rev. E
48
,
3674
3691
(
1993
).
22.
M.
Doi
and
A.
Onuki
, “
Dynamic coupling between stress and composition in polymer solutions and blends
,”
J. Phys. II France
2
,
1631
1656
(
1992
).
23.
H.
Ji
and
E.
Helfand
, “
Concentration fluctuations in sheared polymer solutions
,”
Macromolecules
28
,
3869
3880
(
1995
).
24.
M.
Cromer
,
M. C.
Villet
,
G. H.
Fredrickson
,
L. G.
Leal
,
R.
Stepanyan
, and
M. J. H.
Bulters
, “
Concentration fluctuations of polymer solutions under extensional flow
,”
J. Rheol.
(in press).
25.
A. E.
Likhtman
and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation
,”
J. Non-Newtonian Fluid Mech.
114
,
1
12
(
2003
).
26.
R. S.
Graham
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
27.
M.
Cromer
,
L. P.
Cook
, and
G. H.
McKinley
, “
Pressure-driven flow of wormlike micellar solutions in rectilinear microchannels
,”
J. Non-Newtonian Fluid Mech.
166
,
180
193
(
2011
).
28.
S.-Q.
Wang
,
R.
Ravindranath
, and
P. E.
Boukany
, “
Homogeneous shear, wall slip, and shear banding of entangled polymeric liquids in simple-shear rheometry: A roadmap of nonlinear rheology
,”
Macromolecules
44
,
183
190
(
2011
).
29.
S.
Cheng
and
S.-Q.
Wang
, “
Is shear banding a metastable property of well-entangled polymer solutions
?”
J. Rheol.
56
,
1413
1428
(
2012
).
You do not currently have access to this content.